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Abstract: Proactively forecasting disputes in the initiation phase of public-private partnership (PPP) projects can considerably reduce the
effort, time, and cost of managing potential claims. This comprehensive study compared classification models for PPP project dispute
problems. Performance comparisons included four machine learners, four classification and regression trees, two multivariate statistical
techniques, and combinations of techniques that have performed best according to a historical database. Experimental results indicate that
an ensemble technique (i.e., SVMs+ANNs+C5.0) provides better cross-fold prediction accuracy (84.33%) compared with all other individual
classification models. Notably, SVM (support vector machine) is the best single model for classifying dispute propensity in terms of overall
performance measures. This study demonstrates the efficiency and effectiveness of data-mining techniques for early prediction of dispute
propensity in PPP projects pertaining to public infrastructure services. The modeling results provide proactive-warning and decision-support
information needed for managing potential disputes before disputes occur. DOI: 10.1061/(ASCE)CP.1943-5487.0000197. © 2013 Ameri-
can Society of Civil Engineers.
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Introduction

Public-private partnership (PPP) is a financial strategy for stimulat-
ing private investments in public services. Although the public
sector is risk averse and tends to avoid financial guarantees,
government support for PPP projects is common in developing
countries compared with developed ones, especially after the 2008
global financial crisis significantly affected the construction indus-
try, which is a pillar of the Taiwan economy. Since then, the Taiwan
Public Construction Commission (TPCC) has actively promoted
and encouraged private-sector participation in infrastructure and
building construction throughout Taiwan.

Unlike the owner–general contractor relationship, PPP projects
involve devoted stakeholders, including the promoter (the govern-
ment), participating private investors, and financial institutions.
Because of the high risks associated with the construction business,
repeated challenges of stakeholders can cause delays in completing
projects, budget overruns, and poor construction quality during the
implementation, construction, operations, and transfer phases.

Although numerous studies (Abednego and Ogunlana 2006;
Cheung 1999; Cheung et al. 2002; Gebken and Gibson 2006; Jones
2006) indicate that an efficient, effective, and fair dispute resolution
process is essential for a successful PPP, this study focuses on pro-
viding a warning by predicting dispute propensity before project

initiation. In addition to predicting propensity of construction
claims, and unlike previous research in litigation outcome predic-
tion (Arditi et al. 1998; Arditi and Pulket 2005, 2010; Arditi and
Tokdemir 1999a, b; Chau 2007; Pulket and Arditi 2009a, b), the
proposed prediction method gives supportive information needed
by the governmental authority to furnish contract documents in
the bidding phase.

On the basis of the partnerships, the Taiwan government func-
tions as a promoter by constructing and operating public infrastruc-
ture or buildings with minimal out-of-pocket expense but with
full administrative support. Private investors are expected to assume
all risks and to obtain all funding from lenders (usually banks), who
are expected to finance the private investors at a reasonable interest
rate intermediated by the government. Given these seemingly
bonded yet adversarial relationships between participants, the
government, the investor, and the banker are likely to cooperate
in successfully completing the project.

During the past decade, nevertheless, many PPP projects have
failed because of project disputes occurring in the build–operate–
transfer phases. The dispute rate was 23.6% during 2002–2009
according to statistics released by the Taiwan Public Construction
Commission (PCC) (2011). Such disputes can be classified as
mediation and nonmediation procedures. The nonmediation proce-
dures include arbitration, litigation, negotiation, and resorting to
higher authority, e.g., administrative appeals. In Taiwan, up to 84%
of PPP projects are settled by mediation or negotiation within only
1–9 months, whereas arbitration or litigation costs all parties
considerably more time and money (PCC 2011).

Taiwan has legally supported PPP projects for nearly 10 years.
The National PPP Taskforce is usually responsible for nationwide
policy making and sometimes advises on provisions for individual
projects, whereas departments/local governments are generally
responsible for PPP project delivery. For effective control of proj-
ects and to formulate proactive dispute management strategies,
early knowledge and prediction of the PPP project dispute propen-
sity is essential for providing the governmental PPP Taskforce with
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fundamental information for implementing a win-win PPP strategy
and for preventing disputes.

Further, depending on the possible outcomes of a dispute,
precautionary measures can be taken proactively when a project
is in progress. Additional preparation in preventive actions can
be beneficial once the disputes occur by reducing the future efforts,
time, and costs of multiple parties during dispute settlement.

To achieve this goal (early knowledge of dispute propensity),
this study presents classification models for predicting PPP dispute
outcomes so as to alleviate future negative impacts on project
delivery, operations, and transfer from the government perspective.
The first step of the research procedure was to apply all historical
data for PPP projects commenced during 2002–2009 to establish
the functional relationships between characteristics of provided
cases and the corresponding past claim occurrences. The major dif-
ference from conventional construction project disputes is that PPP
project disputes may occur not only in the building phase, but also
in the operations, rent, or transfer phases. The odds of a dispute
are therefore much higher than those in a regular contracting
procurement.

The remainder of this paper is organized as follows. The next
section comprehensively reviews the literature on artificial intelli-
gence and its application to predicting construction disputes and
litigation resolution. The next two sections present the research
methodology and evaluation methods, respectively, which provide
a theoretical perspective of classification models adopted for
subsequent investigation. Then, the next section articulates the
project information and experimental analyses, including raw data
preprocessing, descriptive statistics, and comparisons of model
performance based on the PPP project database. Finally, conclud-
ing remarks and directions for future work are given.

Literature Background of Construction Dispute
Prediction

In recent years, public infrastructure and building construction has
often been financed by the PPP method because of the large and
burdensome upfront investment costs (Clifton and Duffield 2006).
Disputes among PPP participants may involve many issues, includ-
ing surety bond issue, subcontractor qualification, license permit,
investment scale, resident rights, government guarantee, excessive
profits, operations period, taxation, and default loan commitment.
Disagreements among parties can jeopardize the original project
plan and cause the time-consuming dispute handling process that
damage the government’s PPP supporting image and the investors’
future willingness to participate in public services.

When a dispute or claim occurs, the local government owners
usually resort to adjudication by the central governmental
authority (in this case, TPCC) if initial negotiations cannot resolve
mutual conflicts. On agreement, an impartial committee may be
suggested as a next option for mediating disputes (Jones 2006;
Keith 1997). The timing to form up the committee, operation
functions, and implementing methods should be clearly described
in the contract before executing the project. Because mediation
often cannot resolve the disputes, arbitration or litigation is often
the only option based on the current law. However, because of the
insufficient confidence of stakeholders about the current arbitra-
tion system, litigation is the agreed resolution mechanism in most
PPP projects (PCC 2010). Because not all disputes or claims
require costly and time-consuming dispute handling, an early-
warning dispute prediction method is needed so that government
owners and investors can take proactive measures during public
construction projects.

Because of the unique and dynamic nature of PPP projects,
claims and disputes are regulated by the executive government unit
before the project construction commences (PCC 2010). Unlike
conventional construction projects, PPP projects involve not only
a building (B) stage, but also operations (O), rent (R), transferring
(T), and own (On) stages (e.g., BOT,OT, ROT, BOOn, BTO). In post-
construction stage, the likelihood of incomplete contracts usually in-
creases, especially in long-term and complex PPP projects. Some
contractual agreements designed to maximize ex-ante efficiency
may result in ex-post inefficiency because the value of the contract
performance to the promisee is lower than the cost of performance
incurred by the promisor (Solino and Vassallo 2009).

Specifically, the opportunistic behaviors of individual parties
trying to exploit a situation for their own advantage increase the
potential for increased transaction costs in the postconstruction
stage of PPP projects (Chang and Ive 2007; Irwin 2007; Zhang
2005). Moreover, as the highest public construction authority,
TPCC encounters an extremely high volume of planning and pro-
moting PPP projects and regular construction activities. Hence,
management personnel would benefit if the TPCC or PPP Task
Force had a decision-support tool for estimating dispute propensity
and for planning how disputes should be resolved before initiating
the project.

Several related attempts have been explored to minimize con-
struction litigation by predicting the likelihood of court decisions.
In Arditi et al. (1998), a network was trained using Illinois appellate
courts data, and a 67% prediction accuracy was obtained. The
authors believed that, if the parties to a dispute know with some
certainty how the case would be resolved in court, the number
of disputes could be reduced greatly.

In another series of studies, artificial intelligence techniques
achieved superior prediction accuracy with the same data set,
83.33% in the case-based reasoning study (Arditi and Tokdemir
1999b), 89.95% in the boosted decision trees (Arditi and Pulket
2005), and 91.15% in integrated prediction modelling (Arditi
and Pulket 2010). These studies used artificial intelligence (AI)
to enhance prediction of outcomes in conventional construction
procurement litigation.

However, Chau (2007) found that, other than the previously
noted case studies, AI techniques are rarely applied in the legal field
(Chau 2007). The author thus applied particle swarm optimization-
based AI techniques to predict construction litigation outcomes, a
field in which new data mining techniques are rarely applied. The
presented network achieved an 80% prediction accuracy rate,
which is much higher than mere chance. Nevertheless, the author
suggested the use of additional case factors related to cultural,
psychological, social, environmental, and political characteristics
in future works.

For construction disputes triggered by change orders, Chen
(2008) proposed a K Nearest Neighbor (KNN) pattern classifica-
tion to identify potential lawsuits on the basis of a nationwide study
of U.S. court records. The authors showed that the KNN approach
has an 84.38% classification accuracy (Chen 2008). Chen and Hsu
(2007) further applied hybrid ANN (artificial neural network)-CBR
(case-based reasoning) model with disputed change order dataset to
obtain early-warning information. The classifier reached a similar
prediction rate of 84.61% (Chen and Hsu 2007).

Despite the numerous studies of CBR and its variations for
identifying similar dispute cases for use as references in dispute
settlements, Cheng et al. (2009) further refined and improved
the conventional case-based reasoning approach by combining
fuzzy-set theory with a new similarity measurement that fuses
Euclidean distance and cosine angle distance (Cheng et al.
2009). The proposed model successfully extracted the knowledge

52 / JOURNAL OF COMPUTING IN CIVIL ENGINEERING © ASCE / JANUARY/FEBRUARY 2013



and experience of experts from 153 historical construction dispute
cases manually collected from multiple sources.

Generally speaking, all the past studies analyzed in that study
focused on either specific change order disputes or on conven-
tional contracting project using a single accuracy performance
measure. Characteristics and environments of construction proj-
ects under PPP strategy, however, are much different from the
above general contractor–owner relationships and need another
insightful study of AI or data mining (DM) techniques with
rigorous model performance measures to assist governmental
agencies in predicting and preventing disputes before they occur.

Because disputes always involve numerous complex and
interconnected factors and are difficult to rationalize, use of DM
techniques is now among the most effective methods of determin-
ing hidden relationships between the available or accessible attrib-
utes and dispute-handling methods (Arditi and Pulket 2005, 2010;
Arditi and Tokdemir 1999a; El-Adaway and Kandil 2010; Kassab
et al. 2010; Pulket and Arditi 2009b). Identifying these attributes
and methods would give practitioners improved understanding of
the complex nature of PPP project claims.

The DM or AI-based approaches are related to computer system
designs that attempt to resolve problems intelligently by emulating
human brain processes. As AI technology enhances the ability of
computer programs to handle tasks for which humans are still
superior (Haykin 1999), AI models are typically used to solve pre-
diction or classification problems. Researchers in various scientific
and engineering fields have recently combined different AI para-
digms to enhance their efficacy. Numerous studies confirm that
hybrid AI schemes have promising applications in various indus-
tries (Arditi and Pulket 2010; Chen 2007; Chou et al. 2010, 2011;
Kim and Shin 2007; Lee 2009; Li et al. 2005; Min et al. 2006;
Nandi et al. 2004; Wu et al. 2009; Wu 2010). However, because
selecting the most appropriate combinations is difficult and time-
consuming, further attempts are not worthwhile unless significant
improvements are made.

This study thereby constructed machine learning [ANNs,
SVMs, DL (decision list), TAN (tree-augmented naïve Bayesian)],
classification and regression-based techniques [CART (classifica-
tion and regression technique), QUEST (quick, unbiased and effi-
cient statistical tress), C5.0, Exhaustive CHAID (Chi-squared
automatic interaction detection)], multivariate statistical methods
[DA (discriminant analysis), LR (logistic regression)], and ensem-
ble models by combining the best of the above approaches to clas-
sify PPP project dispute propensity and to compare their prediction
performance. Notably, prediction accuracy depends mainly on the
amount and quality of information available at the time of estima-
tion. Thus, providing accurate preliminary estimates is extremely
challenging when using these data mining models, particular dur-
ing the project initiation phases (Chou 2009).

Classification Models and Research Methodology

When the response variable is categorical rather than continuous,
prediction problems become data classification problems. Classifi-
cation (or supervised learning) techniques are based on learning by
examples that map input vectors into one of several desired output
classes. In supervised learning, a target categorical variable
(hereafter, dispute propensity), is partitioned into binary classes
(i.e., dispute and no dispute). Although classification techniques
are widely used in various disciplines, their effectiveness and
efficiency are rarely exploited in the construction industry, particu-
larly in the PPP-related domain. The classification techniques
proposed in this study are concisely described along with their
evaluation methods in the following sections.

Machine Learners

Neural Net
A neural net [or artificial neural network (ANN)] consists of
information-processing units similar to neurons in the human brain
except that a neural network consists of artificial neurons (Haykin
1999). Neural networks learn by experience, generalize from
previous experiences to new ones, and make decisions. A neural
network is a group of neural and weighted nodes, each representing
a brain neuron, and the connections among these nodes are analo-
gous to the synapses connecting brain neurons.

Specifically, multilayer perceptron (MLP) neural networks are
the standard neural network models. In an MLP network, the input
layer contains a set of sensory input nodes, one or more hidden
layers contain computation nodes, and an output layer contains
computation nodes. The input nodes/neurons are the feature values
of an instance, and the output nodes/neurons function as discrim-
inators between the class of the instance and those of all other
instances.

In the multilayer architecture, input vector x passes through the
hidden layer of neurons in the network to the output layer. The
weight connecting input element i to hidden neuron j is denoted
by Wji, and the weight connecting hidden neuron j to output
neuron k is denoted by Vkj. The net input of a neuron is obtained
by calculating the weighted sum of its inputs, and its output is
determined by applying a sigmoid function. Therefore, for the
jth hidden neuron

nethj ¼
XN
i¼1

Wjixi and yi ¼ fðnethj Þ ð1Þ

whereas for the kth output neuron

netok ¼
XJþ1

j¼1

Vkjyi and ok ¼ fðnetokÞ ð2Þ

The sigmoid function fðnetÞ is the logistic function

fðnetÞ ¼ 1

1þ e−λnet
ð3Þ

where λ controls the gradient of the function.
For a given input vector, the network produces an output ok.

Each response is then compared with the known desired response
of each neuron dk. The weights in the network are then modified
continuously to correct or reduce errors until the total error from all
training examples is maintained below a predefined tolerance level.

For the output layer weights V and the hidden layer weights W,
the update rules are given by the 4th and 5th equations,
respectively:

Vkjðtþ 1Þ ¼ vkjðtÞ þ cλðdk − okÞokð1 − okÞyjðtÞ ð4Þ

Wjiðtþ 1Þ ¼ wjiðtÞ þ cλ2yjð1 − yjÞxiðtÞ

×

�XK
k¼1

ðdk − okÞokð1 − okÞvkj
�

ð5Þ

Support Vector Machines
Support vector machines (SVMs), which were introduced by
Vapnik (1998), perform binary classification, i.e., they separate a
set of training vectors for two different classes ðx1; y1Þ; ðx2; y2Þ; : : : ;
ðxm; ymÞ where xi ∈ Rd denotes vectors in a d-dimensional
feature space and yi ∈ f−1;þ1g is a class label. The SVM model
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is generated by mapping the input vectors onto a new higher
dimensional feature space denoted as Φ∶Rd → Hf where d < f.
An optimal separating hyperplane in the new feature space is then
constructed by a kernel function Kðxi; xjÞ, which is the product of
input vectors xi and xj and where Kðxi; xjÞ ¼ ΦðxiÞ · ΦðxjÞ.
Decision List
A decision list (DL) finds a group of individuals with a distinct
behavior pattern by using an if–then rule that has two parts: an
antecedent part and a consequent part. The antecedent is a Boolean
expression of predictors, and the consequent is the predicted value
of the target field when the antecedent is true (Klivans and Servedio
2006). The DL algorithm can be summarized as follows (IBM
2010):
1. Find candidate rules in the original dataset.
2. Append the best rules to the decision list.
3. Remove records covered by the decision list from the dataset.
4. Find new rules based on the reduced dataset.
5. Repeat the process until one or more of the stopping criteria

are met.
Notably, the order of decision rules is significant. A case that is

governed by a rule is ignored by subsequent rules.

Tree Augmented Naïve Bayesian Classifier
The tree-augmented naïve Bayesian (TAN) classifier improves
on the naïve Bayes model by succinctly describing the joint prob-
ability distribution for a given set of random variables. It allows
predictors that are dependent on other predictors in addition to
the target variable. The TAN has demonstrated superior classifica-
tion accuracy and simplicity in comparison with the general
Bayesian network model (Friedman et al. 1997). The algorithm
for the TAN classifier learns a tree structure overX by using mutual
information conditioned on categorical target variable Y, where
X ¼ ðX1;X2; : : : ;XnÞ represents a categorical predictor vector. It
then adds a link from the target node to each predictor node. The
TAN learning procedure is performed in the following steps
(Friedman et al. 1997; SPSS 2007):
1. Use training data D, X and Y as input.
2. Learn a tree-like network structure over X by using a maxi-

mum weighted spanning tree method.
3. Add Y as a parent of each Xi where 1 ≦ i ≦ n.
4. Learn the parameters of the TAN network.

Classification and Regression-Based Techniques

Classification and Regression Tree and Quick,
Unbiased and Efficient Statistical Tree
Classification and regression tree (CART) technique (Breiman et al.
1984) partitions the data into two subsets so that the records within
each subset are more homogeneous than those in the previous sub-
set. In this recursive process, each of the two subsets is then split
again, and the process repeats until the homogeneity criterion is
reached or until some other stopping criterion is satisfied (Witten
and Frank 2005). A relatively new binary tree-growing technique,
QUEST (Quick, Unbiased and Efficient Statistical Tree), is another
alternative binary-split decision tree algorithm for data classifica-
tion. The QUEST algorithm is similar to CART except that QUEST
uses an unbiased variable selection technique by default and uses
imputation instead of surrogate splits to deal with missing values.
Therefore, QUEST can easily handle categorical predictor variables
with many categories (Loh and Shih 1997).

C5.0
Another recent classification technique is C5.0, which was devel-
oped by J. Ross Quinlan (Quinlan 2007). This greedy algorithm

obtains decision trees featuring boosting technology for improving
accuracy in identifying samples. The top-down approach (divide
and conquer) to decision tree induction starts with a training set
of tuples and their associated class labels. The training set is recur-
sively partitioned into smaller subsets as the tree is constructed
(Tan et al. 2006). The main difference between CART and C5.0
is that the former performs only binary splits, which gives binary
trees, whereas the latter performs splits that are as large as the
number of categories, which gives a “bushlike” structure. Notably,
an alternative solution to limiting tree growth is pruning the full-
grown tree. The CART and CART-like procedures use validation
data to prune deliberately overgrown trees by using training data,
whereas C5.0 uses training data for both growing and pruning the
tree (Shmueli et al. 2007).

Exhaustive Chi-Squared Automatic Interaction Detection
To avoid overfitting the full-grown tree to the training data,
Chi-squared automatic interaction detection (CHAID) is the stan-
dard method for setting stop rules to prevent the tree from growing
excessively and overfitting the training data. The algorithm also
uses a recursive partitioning method that predates CART technique
and is widely applied in diverse domains (Shmueli et al. 2007). It
tests for independence by Chi-square test to assess whether splitting
a node obtains a statistically significant improvement in purity.
Particularly, the predictor with the strongest association (according
to p-value) with the response variable at each node is used as a split
node. If the tested predictor does not show a statistically significant
improvement, no split is performed, and the algorithm stops.

This study, however, proposes the use of Exhaustive CHAID, a
modification of CHAID developed to address the weakness of the
CHAID technique (Biggs et al. 1991), to classify the target field.
Specifically, CHAID may not always find the optimal split for a
predictor variable because it stops merging categories as soon as
it finds that all remaining categories significantly differ. Exhaustive
CHAID remedies this by continuing to merge categories of the
predictor variable until only two super categories remain. It then
examines the series of merges for the predictor and finds the set
of categories that gives the strongest association with the target var-
iable and computes an adjusted p-value for that association. Thus,
Exhaustive CHAID can find the best split for each predictor and
then choose which predictor to split by comparing their adjusted
p-values (SPSS 2007).

Multivariate Statistical Analyses

Discriminant Analysis
The goal of discriminant analysis (DA) is to obtain rules that
describe the separation between groups of observations (Hubert
and Van Driessen 2004). Moreover, it predicts values of a
categorical-dependent variable on the basis of a linear combination
of interval independent variables, X1;X2; : : : ;Xm. The classifica-
tion functions can predict which group in each case most likely
belongs by calculating the resulting classification score, CSi, which
is given by

CSi ¼ bi1X1 þ bi2X2 þ bi3X3þ · · · þbimXm þ ki ð6Þ
where the subscript i denotes the respective group; subscripts
1; 2; : : : ;m denote the m discriminating variables; ki = constant
for the ith group, bij = regression coefficients for the jth variable
when computing the classification score for the ith group; and
Xj = observed value for the respective case for the jth variable.
The regression coefficients are selected by maximizing the distance
between the means of the dependent variable or, alternatively, by

54 / JOURNAL OF COMPUTING IN CIVIL ENGINEERING © ASCE / JANUARY/FEBRUARY 2013



minimizing the distance between actual and predicted outputs
(Katos 2007). For a two-group problem, the interpretation closely
follows the logic of ordinary multiple regression.

Logistic Regression
Logistic regression (LR), also known as logistic model or logit
model, extends linear regression to problems in which the de-
pendent variable is categorical. It predicts the probable occur-
rence of an event by fitting data onto a logistic curve. Like
regression analysis, its predictor variables may be either numeri-
cal or categorical. Given an input z, the logistic function [output
fðzÞ] is

fðzÞ ¼ 1

1þ e−λz
ð7Þ

where λ = parameter for controlling the gradient of the function.
The variables of z are usually defined as

z ¼ β0 þ β1x1 þ β2x2 þ : : : þ βkxk ð8Þ

where β0 is called the intercept; and β1, β2, and so on are called the
regression coefficients of x1, x2, respectively. The intercept is
the value of z when the value of all independent variables is zero.
Positive and negative regression coefficients indicate that the expla-
natory variable increases and decreases, respectively, the probabil-
ity of the outcome. Additionally, a large regression coefficient
means that the risk factor has a stronger effect on the probability
of an outcome.

Notably, both DA and LR determine which variables to retain
or remove from related theories. Independent variables are selected
for the regression equation through either forced entry or stepwise
regression. The forced entry method does not filter independent
variables and enters all inputs needed by the model to calculate the
coefficients of all variables. Stepwise approach, however, repeat-
edly calculates the effect of each independent variable on the
dependent variable; the variables are prioritized for selection or
removal according to their contribution. Here, the process contin-
ues until all variables in the equation comply with the screening
criteria.

Ensemble Model

Ranking a set of the preceding candidate models enables selection
of the best performing models, which can be combined into a single
ensemble model. This approach often yields more accurate predic-
tions compared with conventional models because it aggregates the
benefits of multiple models (Alexandre et al. 2001). Models com-
bined in this manner typically perform at least as well as the best of
the individual models and often better. If the primary goal is
maximizing automation of the prediction process, the ensemble
model usually provides practitioners with a sufficiently robust
model without having to delve specifics as required in the preced-
ing models.

The ensemble structure (Fig. 1) can specify the combined
method used to determine the ensemble score, such as “simple
voting,” “confidence-weighted voting,” and “highest confidence
wins methods.” In simple voting, for example, if two out of three
models predict dispute, then dispute wins by a vote of two to one.
In the case of confidence-weighted voting (CWV), the votes are
weighted according to the confidence level for each prediction.
Thus, if one model predicts no dispute with a higher confidence
than the two dispute predictions combined, then no dispute wins.
In this study, the combined method for dispute outputs is CWV
method.

Model Validation and Evaluation Methods

Cross-Fold Validation

When comparing the predictive accuracy of two or more methods,
researchers often use k-fold cross-validation to minimize bias
associated with the random sampling of the training and holdout
data samples. Since cross-validation requires random assignment
of individual cases into distinct folds, a common practice is strati-
fying the folds themselves. In stratified k-fold cross-validation, the
proportions of predictor labels (responses) in the folds are expected
to approximate those in the original dataset.

Empirical studies show that, compared with regular k-fold
cross-validation, stratified cross-validation tends to reduce bias
in the comparison results (Han and Kamber 2001). Kohavi (1995)
further confirmed that 10-fold validation testing was optimal in
terms of computation time and variance (Kohavi 1995). Thus, a
stratified 10-fold cross-validation approach was used to assess
model performance in this study. The entire data set was divided
into ten mutually exclusive subsets (or folds) with class distribu-
tions approximating those of the original data set (stratified). The
subsets were extracted in five steps:
1. Randomize the dataset.
2. Extract one-tenth of the original data set size from the rando-

mized data set (single fold).
3. Remove the extracted data from the original data set.
4. Repeat steps 1–3 eight times.
5. Assign the remaining portion of the data set to the last fold

(10th fold).
After using this procedure to obtain 10 distinct folds, each fold

was holdout rotationally for performance tests of the single flat and
ensemble classification models, and the left over nine folds were
used for training in turns, which obtained 10 independent perfor-
mance estimates. The cross-validation estimate of overall accuracy
was calculated by simply averaging the k individual accuracy mea-
sures for cross-validation accuracy.

Performance Evaluation Methods

The classification performance can be evaluated by computing the
number of correctly recognized class examples (true positives; tp),
the number of correctly recognized examples that do not belong to
the class (true negatives; tn), and the number of examples that were
either incorrectly assigned to the class (false positives; fp) or
that were unrecognized as class examples (false negatives; fn)
(Sokolova and Lapalme 2009). The four counts constitute a con-
fusion matrix (Fig. 2), which can generate commonly used mea-
sures [e.g., accuracy, precision, sensitivity, specificity, and area
under the receiver operating characteristic (ROC) curve] for binary

Classifier 1

Classifier 2

Classifier N

.

.

.

.

Input
Ensemble 

model
Output

Combining the 
prediction results via 
simple voting, 
weighted-confidence 
voting, or highest 
confidence

Fig. 1. Ensemble model
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classification (Ferri et al. 2009; Horng 2010; Kim 2010; Sokolova
and Lapalme 2009).

Prediction accuracy, which is defined as the percentage of
records that is correctly predicted by the model relative to the
total number of records among the classification models, is a
primary evaluation criterion. The classification accuracy can be
obtained by

Accuracy ¼
�

aþ d
aþ bþ cþ d

�
ð9Þ

Precision and sensitivity are two extended versions of accuracy.
Precision can be considered a measure of exactness or fidelity,
whereas sensitivity is a measure of completeness. The precision
in Eq. (10) is defined as the proportion of the true positives com-
pared with both the true positives and false positives given by the
classifier. Sensitivity (a.k.a. recall), which is given by Eq. (11), is
the number of correctly classified positive examples divided by the
number of positive examples in the data. Sensitivity is useful for
evaluating the effectiveness of a classifier in identifying positive
labels.

Precision ¼
�

a
aþ c

�
ð10Þ

Sensitivity ¼
�

a
aþ b

�
ð11Þ

Another performance measure for binary classification is speci-
ficity, which is the proportion of correctly identified negatives in a
binary classification. This measure shows how effectively a classi-
fier identifies negative labels. Eq. (12) is the formula for specificity:

Specificity ¼
�

d
cþ d

�
ð12Þ

Moreover, ROC curves indicate the ability of a classifier to
avoid false classification. The ROC curve captures a single point,
area under the curve (AUC), in the analysis of model performance.
The AUC is equal to the probability that a classifier will rank a
randomly chosen positive instance higher than a randomly chosen
negative one (Fawcett 2006). The AUC, sometimes referred to as
balanced accuracy (Sokolova and Lapalme 2009), is easily derived
by Eq. (13):

AUC ¼ 1

2

��
a

aþ b

�
þ
�

d
cþ d

��
ð13Þ

To compound the effect of preceding measures, an overall aver-
age performance score (S) for the distinct classification models is
proposed:

S ¼ 1

m

Xm
i¼1

Pi ð14Þ

where m = number of distinct performance measures; and Pi ¼ ith
performance measure. The S range is 0–1; the size of the coefficient
is positively related to the effectiveness of the overall evaluation
measures.

In this study, IBM SPSS Modeller (IBM 2010), a powerful and
versatile data analytics workbench, was used for developing the
preceding classification models and for evaluating PPP project
dispute propensity prediction. All model parameters were set to
the default to demonstrate the easier automation and implementa-
tion of the tool compared with other techniques.

Experimental Models for PPP Project Dispute
Prediction

In 2000, Taiwan Legislative Yuan promulgated the Act for Promo-
tion of Private Participation in Infrastructure Projects. Subject to
the Act, privately owned organizations can invest in and operate 13
public infrastructure sectors, including environmental pollution
prevention facilities; sewerage, water supply and water conserv-
ancy facilities; sanitation and medical facilities; social and labor
welfare facilities; cultural and education facilities; major facilities
for tour sites; power facilities and public gas and fuel supply facili-
ties; sport facilities; parks facilities; major industrial, commercial
and hi-tech facilities; development of new towns; and agricultural
facilities.

To demonstrate the applicability and efficiency of the dispute
classification schemes, this study used PPP project data collected
by the TPCC, the highest authority of public services and infra-
structure construction in Taiwan, in the proposed classification
models for predicting dispute tendency. Modeling parameters are
set to default while experimenting with various settings to produce
baseline comparisons. Doing so ensures that building a prediction
model is objective, easy, and satisfactory in terms of utilization and
accuracy.

Data Collection and Preprocessing

The study database contains 584 PPP projects promoted by TPCC
in 2002–2009. Of the 584 surveys issued, 569 were returned com-
pleted, and the response rate was 97.4%. The high return rate from
the dispersed governmental units may have been attributable to the
TPCC taskforce, the highest official authority, leading the survey
activity. The questionnaire included items regarding the social dem-
ographics of respondents, background information, project charac-
teristics, and project dispute resolutions. As necessary, survey data
were preprocessed into a structural spreadsheet format by recording
the project attributes with the dispute resolution methods.

In several projects, disputes occurred more than once (up to nine
disputes in a single project) at various project phases. Thus, the
overall data set included data for N ¼ 645 cases (i.e., N2 ¼ 493
nondispute cases; N1 ¼ 152 dispute cases). Through experts’ feed-
back, project attributes relevant to the prediction output of interest
were initially identified through the questionnaire survey. However,
quantitative techniques were still needed to build and validate the
hidden relationships between the selected project predictors and the
response (output) variable.

Unfortunately, the licensed operations duration (LOD) data
were unavailable for one surveyed project that was abruptly can-
celed because of contract termination, although its remaining
attributes were intact. Notably, since each project is valuable,
extrapolating the missing data is both feasible and worthwhile.
The LOD assumedly correlated with private capital investment
(PCI). Thus, the missing LOD value was curve fitted through
11 estimation models (Table 1). One outlier and 33 zero capital

Predicted

Positive Negative

Actual
Positive a (tp) b (fn)

Negative c (fp) d (tn)

Fig. 2. Confusion matrix
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data were eliminated during curve fitting. The best estimation was
obtained by the Power model with R-squared. 719 and statistical
significance at 1% alpha level. When using the Power model, the
LOD derived for this project was 18.46 years.

Table 2 summarizes the statistical profile of categorical labels
and numerical ranges for the resulting study samples. For

PPP-orient procurement, specifically, 59.5% of projects were
performed by the central government. Over the past eight years,
most public construction has focused on cultural and education
facilities (25.3%), sanitation and medical facilities (20.8%), trans-
portation facilities (18.1%), and major tour-site facilities (10.5%).
In accordance with the economic planning and development policy,

Table 1. Curve Estimating Model Summary for the Missing LOD Value

Model Equation R2 Fa

Linear LOD ¼ 9.95þ 3.275E − 6ðPCIÞ 0.345 320.075
Logarithmic LOD ¼ ð−27.034Þ þ ð3.888Þ lnðPCIÞ 0.633 1,047.697
Inverse LOD ¼ 13.775 − 3791.977=PCI 0.067 43.725
Quadratic LOD ¼ 7.945þ 9.978E − 6ðPICÞ − 4.439E − 13ðPCIÞ2 0.573 407.946
Cubic LOD ¼ −6.945þ 1.676E − 5ðPCIÞ − 1.955E − 12 ðPCIÞ2 þ 6.179E − 20ðPCIÞ3 0.671 412.287
Compound LOD ¼ 6.842 × 1.000PCI 0.224 175.135
Power LOD ¼ 0.458 × PCI0.280 0.719 1,552.634
S LOD ¼ eð2.191−362.139=PCIÞ 0.134 94.102
Growth LOD ¼ eð1.923þ1.782E−7ðPCIÞÞ 0.224 175.135
Exponential LOD ¼ 6.842 × e1.782E−7ðPCIÞ 0.224 175.135
Logistic LOD ¼ 1fð1=uÞ þ ½0.146 × ð1.000PCIÞ�g 0.224 175.135
ap-value < 0.001; LOD: licensed operations duration; PCI: private capital investment; u: upper boundary value.

Table 2. Project Attributes and Their Descriptive Statistics (N ¼ 645)

Attribute Data range, categorical label, or statistical description

Input variables

Type of government agency in charge Central authority (59.5%); municipality (11.5%); local government (29%)
Type of public construction and facility 1: transportation facilities (18.1%);

2: common conduit (0%);
3: environmental pollution prevention facilities (2.3%);
4: sewerage (1.1%);
5: water supply facilities (0.5%);
6: water conservancy facilities (2.5%);
7: sanitation and medical facilities (20.8%);
8: social welfare facilities (3.9%);
9: labor welfare facilities (1.2%);
10: cultural and education facilities (25.3%);
11: major tour-site facilities (10.5%);
12: power facilities (0%);
13: public gas and fuel supply facilities (0%);
14: sports facilities (3.3%);
15: parks facilities (2.5%);
16: major industrial facilities (0.5%);
17: major commercial facilities (1.9%);
18: major hi-tech facilities (0.2%);
19: new urban development (0%);
20: agricultural facilities (5.6%).

Project location North (48.5%); center (21.2%); south (24.5%); east (5.3%); isolated island (0.5%)
Executive authority Central authority (36.0%); municipality (36.1%); local government (27.9%)
Type of invested private sector Standard industry classification-primary (0.2%); secondary (38.6%); tertiary (50.7%); quaternary (10.5%)
Planning and design unit Government provides land and plans facility (91.0%); government provides land and private investor

designs facility (5.9%); private provides land and designs facility (3.1%)
PPP contracting strategy BOT (23.7%); OT (52.7%); ROT (23.6%)
Major public infrastructure/facility Promoted as major public infrastructure/facility in PPP Act (80.1%); not major infrastructure/facility

(19.9%)
Project scale Range: 0–60,000,000; sum: 5.43E8; mean: 841337.1776; standard deviation: 3.52061E6 (thousand NTD;

USD:NTD is about 1∶30 as of April 2011)
Government capital investment Range: 0–9,600,000; sum: 40,975,392.41; mean: 63527.7402; standard deviation: 5.11192E5

(thousand NTD)
Private capital investment Range: 0–60,000,000; sum: 5.02E8; mean: 777809.4374; standard deviation: 3.32433E6 (thousand NTD)
Private capital investment ratio (PCIR) Range: 0–100; mean: 91.4729; standard deviation: 25.42269 (%)
Licensed operations duration Range: 0–60; mean: 11.9778; standard deviation: 13.39007 (year)

Output variables

Dispute propensity No dispute occurred (76.4%); dispute occurred (23.6%)
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48.5% of projects were located in northern Taiwan. By the defini-
tion of standard industry, most private sector investment was in
industrial departments (38.6%) and service departments (50.7%).
In most cases (91.0%), the government provided land and facility
designs to attract the investors.

Over the past practice, the three major PPP strategies for
delivering public services were BOT (23.7%), OT (52.7%), and
ROT (23.6%). Specifically, The World Bank Group (WBG) (2011)
defines BOT (build, operate, and transfer) as a strategy in which a
private sponsor builds a new facility, operates the facility, and then
transfers the facility to the government at the end of the contract
period. The government usually provides revenue guarantees
through long-term take-or-pay contracts. Where a private sponsor
rehabilitates an existing facility, then operates and maintains the
facility at its own risk for the contract period, the PPP strategy
is ROT (rehabilitate, operate, and transfer) according to the WBG
classifications. Projects involving only management and lease con-
tracts are classified as OT (operate and transfer) projects.

Further, flagship infrastructure projects refer to those that are
important and fairly large in scale. The average project value is
approximately 841 million NTD (new Taiwan dollar). On the basis
of the collected data, the overall procurement amount through PPP
was about 543 billion NTD. The mean capital investment by the
government and private sectors per project was 63.5 million NTD
and 777.8 million NTD, respectively. Notably, average private
capital investment ratio was as high as 91.4%. The mean duration
of licensed facility operations was about 12.0 years (maximum,
60 years).

To measure the dependencies among the categorized data,
contingency table analyses were compared between the distinct
predictors and response variable through Chi-square testing to infer
the relationships (Table 3). All tests obtained statistically signifi-
cant results at least or near 5% alpha level except the variable
(i.e., planning and design unit), that was a rejection of the null
hypothesis, i.e., no relationship was observed between the row var-
iable (input variables) and the column variable (output variable).

For example, among the disputed cases (N1 ¼ 152), the central
government had a higher probability of encountering disputes
(67.1% probability) compared with municipal (15.1%) and local
agencies (17.8%). Particularly, in Nos. 1, 6, 7, 10, 11, and 20 in
type of public construction and facility (Table 2), disputes occurred
in 76.4% of projects. The data showed that 85.5% disputes
occurred in northern and southern Taiwan.

Interestingly, 92.1% of the disputes occurred when the
government provided the land and was in charge of designing the
facility, whereas merely 2% occurred when private investors pro-
vided the land and designed the facilities themselves. Among the
PPP strategies, the probability of disputes was higher in BOT
(49.3%) than in OT (32.2%) and ROT (18.4%). Notably, once
the project was legally promoted as major infrastructure, the like-
lihood of a dispute involving PPP (38.8%) was lower than that in
nonmajor infrastructure (61.2%).

Moreover, once the project value exceeded 50 million NTD, the
dispute propensity was 4.33 times higher than that for projects val-
ued between 5–50 million NTD or less than 5 million NTD. How-
ever, when the private sector investment exceeded 75%, the dispute
tendency increased to 92.8%. Notably, dispute patterns were sig-
nificantly related to licensed operation period. Table 3 summarizes
the statistical results of the cross-analysis.

Analytical Results and Model Performance

The analyses were reproduced by cross-fold method. In each fold
experiment, 56 models were generated to train the models of each

DM method. The testing fold was then used to verify and retain the
best model of each DM method. The procedure was then rotated to
the next fold until every fold was tested. The coincident matrices
(rows show actuals; columns display predictions) for the individual
models were used to calculate model performance in terms of
five measures: accuracy [Eq. (9)], precision [Eq. (10)], sensitivity
[Eq. (11)], specificity [Eq. (12)], and AUC [Eq. (13)]. Additionally,
a composite index S [Eq. (14)] was derived to evaluate the overall
performance of the distinct classification models.

Table 4 shows the cross–fold modeling performance. The C5.0,
CHAID, and ANNs models were the most accurate according to
accuracy value, which is the most single common measure of model
performance. In terms of overall performance measure S (0.781),
SVMs ranked highest in four performance measures followed
by ANNs, C5.0, and CART Interestingly, C5.0 was the best
single flat model for predicting dispute/no-dispute outcomes
(accuracy ¼ 83.25%) and for classifying no-dispute examples
(sensitivity ¼ 95.58%), whereas SVMs performed best at measuring
classification fidelity for no-dispute examples (precision ¼ 87.67%)
and identifying dispute cases (specificity ¼ 60.42%). Moreover,
SVMs were also the best classifier in terms of avoiding false clas-
sification (AUC ¼ 0.7391).

Table 3. Contingency Table and Chi-Square Test Results for Disputed
Cases

Project attributes p-value
Dispute

occurred (%)

Agency 0.002
Central authority 67.1
Municipality 15.1
Local government 17.8

Type of public construction 0.000
Transportation facilities 10.5
Water conservancy facilities 9.9
Sanitation and medical facilities 17.1
Cultural and education facilities 13.2
Major tour-site facilities 14.5
Agricultural facilities 11.2

Planning and design unit 0.657
Government provides land and plans facility 92.1
Government provides land and private
investor designs facility

5.9

Private investor provides land
and designs facility

2.0

PPP strategy 0.000
BOT 49.3
OT 32.2
ROT 18.4

Major public infrastructure 0.000
No 61.2
Yes 38.8

Project scale (thousand NTD) 0.000
<5; 000 15.8
5,000–50,000 15.8
>50; 000 68.4

PCIR (%) 0.057
<25 3.3
25–50 0.0
50–75 3.9
>75 92.8

LOD (year) 0.000
<5 19.7
5–10 23.0
10–15 5.9
15–20 13.8
>20 37.5
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The three best performing single models (SVMs, ANNs,
and C5.0) were combined (ensemble model) using a confidence-
weighted voting method to assess the aggregation power. Table 5
shows that average cross-fold accuracy (84.33%) was higher than
that in any individual models (Table 4). However, the overall
performance measure was not as good as the best of the three
individual models in this case.

To sum up, an ensemble model (SVMs+ANNs+C5.0) per-
formed best for cross-fold testing data for accuracy, whereas SVMs
was the best overall model for classifying PPP project dispute
propensity. Notably, DL was the worst classifier in almost all
measurements and was clearly inappropriate for project dispute
classification.

Conclusions

The objective of this study was not to propose alternative dispute
resolution (ADR) methods for handling disputes but to predict
dispute propensity in PPP projects by using classification models.
For government agencies, the advantages of early warning of
dispute propensity include reducing the time and effort needed
to prepare a rule set for preventing potential disputes by improving
understanding among the parties of the essential issues on each side
of the potential disputes.

This study presents a number of different classifiers, uses the
three best performed models, and combines them to predict dispute
propensity. For accuracy, although the C5.0 (83.25%), CHAID
(82.63%), and ANNs (82.18%) models perform well when using
cross-fold testing data, the ensemble model (84.33%) performs
even better. Interestingly, in terms of overall performance measure-
ment score (S), SVMs (0.781), ensemble model (0.773), and ANNs
(0.751) are the three best classification models.

Although this study comprehensively compared the effective-
ness of data mining techniques in terms of PPP project dispute
prediction, some classification techniques and their variations were
not evaluated in this study. Future work may investigate whether a
hierarchical ensemble approach combining multiple classifications
and clustering techniques in a parallel or series form can improve
model performance.

Integration of proactive strategy deployment and preliminary
countermeasures are also worthy of further study in PPP project

dispute early-warning systems. Another potential research direction
is a second model for use once the propensity of a dispute is iden-
tified. On the basis of the disputed cases, such a model is needed to
predict which dispute category and which resolution methods are
likely to be used at which phases of the project lifecycle by mapping
the hidden association rules.
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