Downloaded from ascelibrary.org by MARRIOTT LIB-UNIV OF UT on 11/22/14. Copyright ASCE. For personal use only; al rights reserved.

Neurofuzzy Decision Support System for Efficient Risk
Allocation in Public-Private Partnership Infrastructure
Projects

Xiao-Hua Jin'

Abstract: The performance of public-private partnership (PPP) infrastructure projects is largely contingent on whether the adopted risk
allocation (RA) strategy is efficient. Theoretical frameworks drawing on the transaction cost economics and the resource-based view of
organizational capability are able to explain the underlying mechanism but unable to accurately forecast efficient RA strategies. In this
paper, a neurofuzzy decision support system (NFDSS) was developed to assist in the RA decision-making process in PPP projects. By
combining fuzzy and neural network techniques, a synthesized fuzzy inference system was established and taken as the core component
of the NFDSS. Evaluation results show that the NFDSS can forecast efficient RA strategies for PPP infrastructure projects at a highly

accurate and effective level. A real PPP infrastructure project is used to demonstrate the NFDSS and its practical significance.
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Introduction

Due to rapid social and economic growth, a massive demand for
investment in infrastructure has been witnessed in many countries
(The World Bank 2008). A range of public-private partnership
(PPP) arrangements are rapidly becoming the preferred way to
provide public services worldwide because PPPs have been seen
as a mechanism to tackle inefficacies and insufficient governmen-
tal funds for infrastructure development, which are common in
conventional provision of infrastructure (Jin and Doloi 2008b).
The core principle for PPPs is value for money (DTF 2000). Risk
transfer is one of the greatest value-for-money drivers. That is,
appropriate risks can be transferred to the private sector, who is
supposed to be capable of managing those risks better (Hayford
2006). Accordingly, cheaper and higher-quality infrastructure ser-
vices may be provided than in conventional way.

However, evidence from projects worldwide shows that risks
are not managed properly (Thompson and Perry 1992). Construc-
tion projects manifest more risks than do other industries (Han
and Diekmann 2004). The complexity of arrangements and in-
complete contracting nature of PPP projects have led to increased
risk exposure for all the parties involved (Woodward 1995). A
perception that privatization involves transfer of all risks to the
private sector is still prevalent in many countries (Faulkner 2004).
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Sometimes risks will inevitably be allocated to the party least able
to refuse them rather than the party best able to manage them,
especially when the government maintains maximum competitive
tension (Thomas et al. 2003). However, transfer of risks to the
private sector comes at a price (Hayford 2006) and improper al-
location of risks among stakeholders may lead to higher than
necessary prices (Thomas et al. 2003). It is thus suboptimal for
government to either retain or transfer inappropriate risks (Arndt
1999).

Ongoing efforts have been made in seeking a risk allocation
decision-making (RADM) mechanism to achieve optimal risk al-
location (RA) in PPP projects (DFA 2005). Jin (2010) recently
established a theoretical framework drawing upon the transaction
cost economics (TCE) and the resource-based view (RBV) of
organizational capabilities. In a logical and holistic way, the
framework interprets the mechanism underlying the decision-
making process of how to efficiently allocate a given risk. Opti-
mum models have been obtained by using multiple linear
regression (MLR) technique and important linearly bound deter-
minants identified (Jin 2010).

Nonetheless, it was acknowledged that, for more accurate pre-
diction purpose, the basically probability-oriented MLR is unable
to identify all the factors necessary to reflect realistic situations
(Jin 2010). Therefore, nonprobability-oriented techniques have
been considered to tackle issues characteristic of uncertainty, un-
specificity, complexity, and nonlinearity during the process of
RADM. In this paper, the theoretical framework is first revisited
briefly, followed by a justification of why using neurofuzzy mod-
eling techniques. Then the four-stage development of a neuro-
fuzzy decision support system (NFDSS) is presented, which serves
to forecast efficient RA strategies from a number of alternatives
and adopts a synthesized fuzzy inference system (SynFIS) as the
model base. The theoretical framework is taken as the architecture
of the kernel component of the NFDSS. The NFDSS is validated
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and demonstrated by using a real PPP infrastructure project. Fi-
nally, a conclusion is presented.

Theoretical Framework of Efficient RADM

Based on the TCE and the RBV of organizational capabilities, Jin
(2010) proposed a theoretical framework for interpreting RA
mechanisms in PPP projects. Choosing a RA strategy is actually
viewed as a process of deciding the proportion of risk manage-
ment (RM) responsibility between internal and external organiza-
tions based on a series of characteristics of risk management
service transaction in question (Jin 2010). Because any issue that
can be formulated as a contracting problem can be investigated to
advantage in transaction cost economizing terms (Williamson
1985), RADM in PPP projects is suitable to be viewed from a
TCE perspective. Besides, many features of PPPs, including in-
complete contracting, long-term partnership, heavy investment
into assets, complex uncertainty, etc., also ensure such suitability
(Jin and Doloi 2008b). Jin (2010) also emphasized that both pro-
duction and governance costs must be taken into account in any
analysis adopting TCE approach. This is because the objective of
TCE is not to minimize production and governance costs sepa-
rately but to economize on the total cost of a transaction (Will-
iamson 1985, 1996). Therefore, organizational capability, which
production costs are greatly contingent on Jacobides and Hitt
(2005), should be taken into consideration when seeking efficient
governance structure (Jin 2010). Among various theories dedi-
cated to organizational capabilities, the RBV of organizational
capability has been recognized as the one that is most capable of
explaining competitive heterogeneity based on the premise that
close competitors differ in their capabilities and resources in im-
portant and durable ways (Helfat and Peteraf 2003).

Following the TCE and the RBV theories, the characteristics
of a risk management service (RMS) transaction can be catego-
rized into (1) private partner’s RM routines, which embody com-
petence in carrying out RM activities and indicate that alternative
uses could have been achieved without sacrificing productive
value (reversely approximating to supplier’s asset specificity of
TCE); (2) partners’ cooperation history (approximating to trans-
action frequency of TCE); (3) partners’ RM commitment (re-
versely matching behavioral uncertainty of TCE); (4) RM
environmental uncertainty (EU) (matching environmental uncer-
tainty of TCE); and (5) partners’ RM mechanism (approximating
the organizational capability of RBV) [see the work of Jin (2010)
for a detailed discussion]. Accordingly, a theoretical framework
has been established, as shown in Fig. 1. For different combina-
tions of the status of these characteristics, there exist different RA
strategies for achieving efficiency (Jin 2010).

Neurofuzzy Modeling Techniques

The framework has been tested and generally supported by using
MLR technique (Jin 2010). However, it cannot be used to accu-
rately forecast efficient RA strategies due to the inherent limita-
tions in MLR analysis. These limitations include only considering
linear relationship, being probability oriented, and being unable to
identify all the factors necessary to reflect realistic situations
(Tsoukalas and Uhrig 1997). Therefore, nonprobability-based
analysis techniques are required and nonlinear relationships need
to be considered for accurately modeling RADM process (Jin and
Doloi 2008b). One suitable approach is using adaptive neurofuzzy

Cooperation

RM Routine History
(TCE: Asset (TCE:
Specificity) Transaction
Frequency)

Risk Allocation

Strategy
nvironmental (TCI;: Governance RM
Uncertainty tructure) Commitment
(TCE: (TCE:
Environmental Behavioural

Uncertainty) Uncertainty)

RM Mechanism
(RBV:
Organizational
Capability)

Fig. 1. Theoretical framework for RADM in PPP infrastructure
projects (Jin 2010)

inference system (ANFIS), which combines the strengths of fuzzy
logic (FL) and artificial neural networks (ANNSs) and thus pos-
sesses the capability to handle unspecificity, uncertainty, nonlin-
earity, and complexity (Jang 1993; Jang and Sun 1995) that are
involved in most RADM processes (Jin 2010). Additionally,
ANN’s strong learning ability helps to make the system suitable
for prediction.

Based on FL, the fuzzy reasoning technique is close to the
process of inference from commonsense knowledge (Tanaka
1997; Zadeh 1986). Fuzzy linguistic descriptions, often called
fuzzy inference systems (FIS), are formal representations of the
systems made through fuzzy if/then rules. They offer an alterna-
tive and often complementary language to conventional ap-
proaches to modeling systems. FIS has rigorous mathematical
foundations involving fuzzy sets and fuzzy relations although
they are formulated in human language (Zadeh 1988). They en-
code knowledge about a system in the statement of fuzzy if/then
rules (Kartakapoulos 1996). These rules represent the knowledge
and heuristic rules in a given area. There have been a number of
efforts in using FL in the domain of risk management in construc-
tion projects, such as Kangari (1988), Kangari and Riggs (1989),
Chun and Ahn (1992), Tah et al. (1993), Paek et al. (1993), Wirba
et al. (1996), and Tah and Carr (2000), among many others.
Nonetheless, very few works have focused on the application of
FL to RA. Until recently, Lam et al. (2007) designed a decision
model for RA, in which linguistic principles and experiential ex-
pert knowledge were transformed into a quantitative-based analy-
sis by using FL. However, their RA criteria were not based on
associated theories but solely established by expert knowledge.

On the other hand, the use of ANN techniques allows empiri-
cal information to be embedded into a fuzzy system. This greatly
expands the range of applications in which fuzzy systems can be
used and enhances the utility of fuzzy systems. An ANN is a
massive parallel distributed processor made up of simple process-
ing units. It has a natural propensity for storing experiential
knowledge and making it available for use (Lin and Lee 1996).
Owing to their excellent learning and generalizing capabilities,
ANN techniques have been applied in a variety of construction
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domains, including estimating project markup (Li 1996; Li and
Love 1999; Moselhi et al. 1991), forecasting construction produc-
tivity (Chao and Skibniewski 1994), predicting potential to adopt
new construction technology (Chao and Skibniewski 1995), mod-
eling construction budget performance (Chua et al. 1997), pre-
dicting earthmoving operations (Shi 1999), forecasting residential
construction demand (Goh 2000), predicting project cost (Emsley
et al. 2002), simulating activity duration (Lu 2002), predicting
cost deviation in reconstruction projects (Attalla and Hegazy
2003), forecasting client satisfaction levels (Soetanto and Prov-
erbs 2004), identifying building natural periods (Kuzniar and
Waszczyszyn 2006), and estimating equipment productivity (Ok
and Sinha 2006), among many others. Nonetheless, so far no
work has been done to apply ANN to RA in infrastructure
projects.

There are many merging formats of ANN and FL, such as
neuro-FISs (where ANN is used as a tool in fuzzy models), fuzzy
ANNs (where conventional ANN models are fuzzified), and
fuzzy-neural hybrid systems (where fuzzy technologies and ANN
are incorporated into hybrid systems) (Lin and Lee 1996). These
neurofuzzy techniques have been applied in a variety of construc-
tion domains, including a hybrid method combining principal
items: ratio estimation and ANFIS for mining of cost estimation
data of residential construction projects (Yu and Skibniewski
2010), a fuzzy-neural inference system for decision making in
geotechnical engineering (Cheng et al. 2008), a hybrid soft com-
puting system for mining of complex construction databases (Yu
2007), an optimum bid markup calculation methodology in static
competitive bidding environments using neurofuzzy systems and
multidimensional risk analysis algorithms (Christodoulou 2004),
an automated data interpretation system using neurofuzzy ap-
proaches for sanitary sewer pipeline condition assessment (Chae
and Abraham 2001), a neurofuzzy design system based on a loose
coupling model for preliminary design of concrete box girder
bridges (Zhao et al. 2001), and a multicriterion decision model for
quantitative constructability analysis based on a neurofuzzy
knowledge-based system (Yu and Skibniewski 1999), among
many others. However, thus far there has been no work being
done to apply neurofuzzy techniques to RA in infrastructure
projects.

In this paper, the ANFIS, which was proposed by Jang (Jang
1993; Jang and Sun 1995) to identify a set of parameters through
a hybrid learning rule combining the gradient-descent-based
back-propagation (BP) optimization method and the least-squares
estimator (LSE) method, is adopted for developing a SynFIS.
Fundamentally, ANFIS is a graphical network representation of
zeroth-order or first-order Sugeno-type FIS endowed with neural
learning capabilities (Jang and Sun 1995). The network is com-
prised of nodes and with specific functions collected in layers
(Tsoukalas and Uhrig 1997). Sugeno FIS, also known as Takagi-
Sugeno-Kang FIS, was proposed in an effort to develop a system-
atic approach to generating fuzzy rules from a given input-output
data set (Sugeno 1985; Sugeno and Kang 1988; Takagi and Sug-
eno 1983). The output membership functions (MFs) of Sugeno
FIS are either linear or constant. Because of the linear dependence
of each rule on the input variables (IVs), a Sugeno-type FIS is
compact and computationally efficient. Therefore, the Sugeno-
type FIS is suitable for the use of adaptive techniques, which can
be used to customize the MFs so that the FIS can better model the
data (Fuzzy logic toolbox 2 user’s guide 2007).

Development of NFDSS

Decision support systems (DSSs) are developed to assist problem
solvers and decision makers. Basically, there are two approaches
to developing DSSs, which are operations research (OR) and ar-
tificial intelligence (AI). While OR-based DSSs are normally used
to solve well-structured decision problems, Al-based DSSs are
used to tackle complex problems that traditional techniques can-
not solve (Li and Love 1998). The DSS established in this study
is an Al-based DSS because the SynFIS is adopted as its model
base subsystem, which is presented later in detail. Because ANN
and FL are integrated in the SynFIS, the DSS is titled as a
NFDSS. The NFDSS is a single-user system, which means that an
operating system or application software is usable only by one
person at a time.

The NFDSS was constructed using a four-stage system devel-
opment methodology, which is based on a generic information
system development (Moscato 1998). The four stages of the sys-
tem development process include (1) designing the architecture of
the NFDSS; (2) analyzing and designing the NFDSS mainly by
defining functionalities of the system components and under-
standing how they interact with one another, including building
the SynFIS, which is the kernel of the NFDSS; (3) building the
prototype in order to learn more about the concepts and design;
and (4) evaluating the NFDSS by potential users. The outcome of
each stage was fed back to previous stages in order to refine the
works in previous stages. Details about all the four stages are
reported in the following sections.

Designing NFDSS Architecture

Good system architecture is characterized by clear definitions of
the functionalities of various components and accurate demon-
stration of their interaction with one another and thereby provides
a road map for the system building process (Nunamaker et al.
1990). The NFDSS is a single-user system with a two-tiered ar-
chitecture, which is suitable for developing noncritical applica-
tions with light transaction loads such as a DSS (Dickman 1995).
On the user side, it is a front-end system that works with users to
obtain service requests and present results. On the application
software side, it is a back-end system that executes a SynFIS
analysis and accesses the database for data management. Both
sides were developed and operated in the MATLAB environment.
The NFDSS consists of three interrelated components, which are
(1) database; (2) model base subsystem (ANFIS); and (3) user
interface. These three components are the basic elements in DSS
(Pearson and Shim 1995). The NFDSS is executed on a PC as it
is a single-user system. By using the MATLAB software installed
on the PC, whenever a user sends a request to the NFDSS, the
code is processed by a program designed in MATLAB. The basic
architecture of the NFDSS is illustrated in Fig. 2.

Analyzing and Designing NFDSS

Analysis and design are important parts of the system develop-
ment process. During this stage, the domain being studied needs
to be understood, various alternatives need to be applied, and
proposed solutions need to be synthesized and evaluated (Nuna-
maker et al. 1990). As a result, system components and a devel-
opment platform can be determined. In this study, the three
interrelated components of the NFDSS are (1) database; (2)
model base subsystem; and (3) user interface. The functionality of
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Fig. 2. Components and architecture of NFDSS

the NFDSS is achieved by the interaction and coordination of the
three components and the user. The details are discussed in the
following sections.

Database

Database is designed for the storage and management of data
(Ngai and Wat 2005). In this study, the application software for
the database includes MATLAB and Microsoft Excel, which is
supported by MATLAB. With MATLAB and Microsoft Excel
being used in combination, the database retains (1) the data that
were generated in the training process of the SynFIS, including
values of all the parameters of the SynFIS set; (2) the data to be
obtained from users, including the information about their speci-
fied PPP infrastructure projects, which is taken as IVs of the
NFDSS; and (3) the data to be generated by the NFDSS, i.e., the
forecasted efficient RA strategies.

Model Base Subsystem (SynFIS)

A model base subsystem performs activities to provide analytical
capabilities for a DSS (Turban 1995). In this study, a SynFIS was
used as the model base subsystem in the NFDSS. When users
invoke the process of forecasting an efficient RA strategy regard-
ing a given type of risk in a specified project, an associated pro-
gram is called to (1) elicit from the users the information that is
required for the SynFIS, i.e., the information about their specified
PPP infrastructure projects; (2) access required information from
the database such as the MFs of IVs and output variable (OV)
regarding the set of trained SynFISs; and (3) perform the associ-
ated calculation in the SynFIS set for forecasting.

A neurofuzzy system usually involves structure learning and
parameter learning. In this study, the SynFIS combines structure
and parameter learning into a common framework. To initiate the
learning process in the SynFIS, domain knowledge about IVs and
OVs and a set of input-output data were obtained through litera-
ture review and a questionnaire survey, respectively. The learning
process was then implemented in two sequential learning mod-
ules, which are structure learning module (SLM) and parameter
learning module (PLM) (see Fig. 3). By generating fuzzy rules
from and adjusting parameters based on the numerical data ob-
tained in the fieldwork, the SynFIS is able to realize the synthetic
benefits associated with ANNs and FL.

The tasks in SLM are to determine IVs and OVs based on
domain knowledge and to generate a set of fuzzy if/then rules
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Fig. 3. General structure of SynFIS

from the input-output data set. These variables and fuzzy rules
were then used to determine the structure of the PLM in the
SynFIS environment.

The IVs of SynFIS include RM asset specificity (IV,), part-
ners’ cooperation history (IV,), public partner’s RM commitment
(IV5), private partner’s RM commitment (IV,), environmental un-
certainty (IV), and partner’s RM capability superiority (IVy). IV,
was assessed by a set of three fuzzy values, i.e., “low (L),” “me-
dium (M),” and “high (H).” IV,—IV5 were assessed by a set of
two fuzzy values, i.e., low (L) and high (H). IV, was assessed by
a set of two fuzzy values, i.e., “public partner’s capability is su-
perior (public)” and “private partner’s capability is superior (pri-
vate).” The reason that only IV, was assessed by a set of three
fuzzy values is that asset specificity increases the transaction costs
of all forms of governance and thus is the principal factor in
explaining TCE (Williamson 1996). Therefore, the status of asset
specificity receives more detailed attention and analysis (Jin
2010; Jin and Doloi 2008b).

IV, and IV, were evaluated on a five-point Likert scale di-
rectly by the respondents in the survey. IV; and IV, were derived
from the respondents’ evaluation of the corresponding observed
variables in the survey by using principal component analysis
(PCA) (see Jin 2010). IV5 was derived from the respondents’
evaluation of the corresponding EU factors in the survey by ap-
plying fuzzy operation (see Jin and Doloi 2008a). IV, is the RM
capability difference between public and private partners and
measured by the difference of partner’s RM mechanisms. Part-
ner’s RM mechanism was derived from the respondents’ evalua-
tion of the corresponding observed variables in the survey by
using PCA.

Each fuzzy value is a fuzzy set and determined by a MF. The
commonly used MFs include Gaussian, triangular, and trapezoi-
dal functions (Lin and Lee 1996). In this study, the Gaussian
function was adopted because it is good at achieving smoothness
(Fuzzy logic toolbox 2 user’s guide 2007) and can avoid the prob-
lem of having zero in the denominator in a MF (Liu and Ling
2005). It has been applied in a number of similar studies on
construction-related topics (see, e.g., Liu and Ling 2005). The
Gaussian function, which depends on parameters o and ¢, can be
defined as

M()C;O‘,C) — e—(x—c')2/202 (])
where o and ¢ determine the width and center of the MFs, respec-
tively. The MFs and the initial values of parameters of the IVs are
shown in Table 1. The values of the parameter ¢ were set in such
a way that w(x)=1.0 when x=c. The values of the parameter ¢
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Table 1. Fuzzy Values and MFs of IVs

Linguistic variable Linguistic value

Code Initial MF parameters (o, c) Initial MF [p(x)]

RM asset specificity (IV,) High H (0.85, 5) expl(x—5)%/(~1.445)]
Medium M (0.85, 3) exp[(x—3)%/(~1.445)]

Low L (0.85, 1) expl(x=1)2/(=1.445)]

Partners’ cooperation history (IV,) High H (1.7, 5) exp[(x—5)%/(=5.78)]
Low L (17, 1) expl(x=1)2/(=5.78)]

Public partner’s RM commitment (IV5) High H (1.7, 5) exp[(x—5)%/(=5.78)]
Low L (17, 1) expl(x=1)2/(=5.78)]

Private partner’s RM commitment (IV) High H (1.7, 5) exp[(x—5)%/(=5.78)]
Low L (17, 1) expl(x=1)2/(=5.78)]

Environmental uncertainty (IVs) High H (1.7, 5) exp[(x—5)%/(=5.78)]
Low L (1.7, 1) expl(x—1)%/(=5.78)]

Capability superiority (IVy) Private partner’s capability is superior ~ Private (3.4, 4) exp[(x—4)?/(=23.12)]
Public partner’s capability is superior Public (3.4, —4) expl(x+4)%/(=23.12)]

were set in such a way that the MFs satisfy the condition of
e-completeness (Lee 1990) with £=0.5. This means that given a
value x of one of the inputs in the operating range, a linguistic
value A can always be found such that p,(x)=e.

The OV of the SynFIS is “RA strategy.” The OV’s possible
value fe{1,2,3,4,5}, where {1, 2, 3, 4, 5} represents a five-point
scale of risk transfer proportion, which ranges in a continuum
from 1, denoting “fully bearing by public partner,” via 3, denoting
“equally bearing by public and private partners,” to 5, denoting
“fully bearing by private partner.” As the first-order Sugeno-type
FIS was used in SynFIS, the total number of MFs of OV is the
same as that of fuzzy if/then rules, which were obtained using the
method that is presented in the following section. MFs of OV take
the form of fj=pyx;+qix,+rx;+sxs+1txs5+uxgs+v;, where i in-
dexes fuzzy if/then rules and {p;,q;,r;,s;,t;,u;,v;}=consequent
parameter set of the ith fuzzy if/then rule. Before being passed to
the PLM, each set of consequent parameters was initialized based
on the target output value of a corresponding data pair. The con-
stant v; was assigned with the target output value while the other
parameters were assigned with zero (0) as their initial values.
Taking the first case (the Case) of the 44 survey responses with
regard to “legislative and political risk (R;)” as an example, as the
target output value in the Case is 4, the consequent parameter set
is {0, 0, 0, 0, 0, 0, 4}. The survey and the risks under study are
discussed in the section of “Building NFDSS Prototype.”

Identified concise rules can provide an initial structure of net-
works so that learning processes can be fast, reliable, and highly
intuitive (Kim and Kasabov 1999). In this study, a simple and
straightforward method for generating fuzzy rules from numerical
input-output data set was used. It avoids the time-consuming
training, which is typically required for neural network-based
methods. It is also easy to update or modify the fuzzy rule set by
creating a new rule for a new input-output data pair. This method
was adapted from the one that was proposed by Wang and Men-
del (1992) and consists of three steps including (1) determining
the membership values of each input value of a given data pair for
all fuzzy values of the corresponding fuzzy variable; (2) assigning
each input value with a fuzzy value that the input value has the
maximum membership value of; and (3) obtaining one rule from
each input-output data pair.

If two or more generated fuzzy rules shared the same IF part
and THEN part (in terms of target output value), they were com-
bined and only one rule was generated. If two or more generated
fuzzy rules shared the same IF part but a different THEN part (in

terms of target output value), they were retained and equally
weighted in the PLM.

In the example case, the input-output data pair is (1.0, 2.0, 4.0,
4.7,3.0, 1.0, and 4.0), where the first six and the last numbers are
input and output values, respectively. The outcome of Step 1 cal-
culation is shown in Column 4 in Table 2. In Table 2, the maxi-
mum membership value for each fuzzy variable is highlighted in
bold in Column 4. It can be observed that in the Case, the fuzzy
values assigned to the input values of IV, —IVg are “high,” “low,”
high, high, low, and “public,” respectively. In case two member-
ship values are the same for an input value, the corresponding
input-output data pair will be duplicated and this input value will
be assigned with one fuzzy value in the original data pair and
with the other in the duplicated data pair. This means that the data
set will be expanded to include ambiguous cases.

In the example case, the rule was obtained as below. If two or
more generated fuzzy rules shared the same IF part and THEN
part (in terms of target output value), they were combined and
only one rule was generated. If two or more generated fuzzy rules
shared the same IF part but a different THEN part (in terms of
target output value), they were retained and equally weighted in
the PLM.

Table 2. Determine IF Part of Fuzzy If/Then Rule Based on Input Values
of the Case

Fuzzy Numerical Membership Assigned
variable value Fuzzy value value fuzzy value
Q) 2 ®3) ) (&)
v, 1.0 High 1.000 High
Medium 0.063
Low 0.000
v, 2.0 High 0.211 Low
Low 0.841
A 4.0 High 0.841 High
Low 0.211
v, 4.7 High 0.981 High
Low 0.098
IV; 3.0 High 0.494 Low
Low 0.508
IVg 1.0 Public 0.675 Public
Private 0.341
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Fig. 4. ANFIS architecture

IF IV, is “high,” AND

IV, is “low,” AND

V5 is “high,” AND

IV, is “high,” AND

Vs is “low,” AND

1V is “public,”

THEN OV is f1=p, X 1.0+q, X 2.04r, X 4.0+s5, X 4.7
+1; X3.0+u; X 1.0+v,=4

After the IVs and OVs have been determined and the fuzzy
rules obtained, the structure of the neurofuzzy learning model can
be established. The SynFIS thus enters into the PLM. The PLM
was designed to tune MFs by adjusting antecedent and consequent
parameters in order to achieve a desired level of system
performance. The task was accomplished by building and training
an ANFIS. The architecture of an ANFIS both approximates the
fuzzy reasoning of a Sugeno FIS and facilitates learning from the
input-output data set. The learning algorithm of ANFIS integrates
the advantages of gradient descent optimization and LSE
methods.

The proposed ANFIS in the SynFIS is a multilayer neural
network-based FIS. It has five hidden layers besides input and
output layers. In the hidden layers, nodes function as MFs and
fuzzy rules. This boasts an advantage that a conventional
feedforward multilayer neural network lacks, in which hidden
layers are usually difficult to interpret and/or modify. The
architecture of the proposed ANFIS is illustrated in Fig. 4, where
a square was used to represent “adaptive node,” whose function

depends on its parameter values, and a circle was used to denote
“fixed node,” which has an empty parameter set and a fixed
function. The features and functions of each layer are presented as
follows.

Input Layer. Nodes in the input layer are input nodes that
represent crisp input values. Accordingly, the input value of the
kth IV is denoted by x;, where k € {1,2,...,6} (i.e., six IVs). Each
node in this layer is only connected to the nodes that represent the
MFs of the corresponding fuzzy values of the associated IVs in
the next layer, i.e., Layer 1. The nodes in this layer thus only
transmit input values to the corresponding nodes in Layer 1.

Layer 1. Nodes in Layer 1 are adaptive square nodes labeled Ff
and act as MFs that define the fuzzy values of IVs. Input values
(i.e., x;) are fed to this layer. The outputs of this layer are thus the
membership values of the crisp input values x;. The Gaussian
function was taken as MFs with ¢ and ¢ being the (antecedent)
parameter set. Therefore, the output of a node in Layer 1 is
defined by

k2 k2
0;1).1( — e—(xk - cj) /20’]- (2)

where o* and cf=parameters of the MF that represents the Ith
fuzzy value of the kth IV; (1) denotes Layer 1, ke{1,2,...,6}
(i.e., six IVs); and je{1,2,3} if k=1 and je{1,2} if k
€{2,3,4,5,6} (i.e., three and two fuzzy values of the first and the
other IVs, respectively). The initial connection weights were set to
unity. As the value of these parameters changed during training,
the form of the corresponding MFs varied.

Layer 2. Every node in this layer is a fixed circle node labeled
“I1,” which represents the IF part of a fuzzy rule. That is, each
node in Layer 2 is only connected with those nodes in Layer 1 that
represent the MFs of the fuzzy values specified in the IF part of
the corresponding fuzzy rule. Incoming signals were multiplied
and the corresponding products were taken as the outputs of Layer
2, which are defined by

6

o =1l o™ (3)
k=1

where (2) denotes Layer 2; i=index of fuzzy rules; and i
e{1,2,...,n}, where n=number of the fuzzy rules that were
generated in SLM. The output of each node represents the firing
strength of a rule. The initial connection weights were set to unity.
Thus, all the nodes in Layer 2 form the fuzzy rule set.

Layer 3. Every node in this layer is an adaptive square node
with the node output being defined by

3 2
0§ )= wifi= 0;(' )(pixl + G+ T+ S X+ X+ UXg+ ;) (4)

where w;=firing strength of a fuzzy rule, i.e., 052), and f;
represents the THEN part of a fuzzy rule, i.e., a first-order
polynomial of the input values. Parameters in this layer, i.e.,
i qisri,sisti,u;, v}, are referred to as consequent parameters.
Each node in Layer 3 is fully connected with the nodes in the
Input Layer and only connected with one node in Layer 2
according to the corresponding rule.

Layer 4. There are two nodes in this layer. One node calculates
the sum of the outputs of all nodes in Layer 3 and is thus fully
connected with the nodes in Layer 3. Its output is defined by

4 3 2
o\ = > wfi= > 0¥ = > O (pixy + qxy + Xy + 4 + 1:Xs

+ uxg+v;) (5)

The other node calculates the sum of all rules’ firing strengths and
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is thus fully connected with the nodes in Layer 2. Its output is
defined by

05)= 2 wi=2 0 (©)

Layer 5. The single node in this layer is a fixed circle node
labeled ““/,” which computes the overall output as the ratio of the
output of the first node to that of the second node in Layer 4. The
node output is defined by

— Zwif; 0(14)
o= S o8- O g

where w;=normalized firing strength.

Output Layer. The single node in the output layer only receives
the output of Layer 5 and takes it as the final output of the ANFIS.
The OV is RA strategy.

Once the ANFIS was established, it was used to tune the
antecedent and consequent parameters. There are a number of
algorithms suitable for parameter learning through adjusting the
parameters of MFs. The most commonly used learning algorithms
are based on gradient descent (Horikawa et al. 1992; Hung 1993;
Kasabov et al. 1997; Kim and Kasabov 1999; Lin and Lee 1991;
Shann and Fu 1995). Because ANFIS was adopted in PLM, a
hybrid learning algorithm developed by Jang (1993) was applied
directly to the PLM. The hybrid learning algorithm uses a gradient
descent-based BP algorithm and a LSE algorithm to optimize the
antecedent and consequent parameters, respectively. In order to
apply the hybrid learning algorithm, each training epoch was
composed of a forward pass and a backward pass. A detailed
explanation of the gradient descent-based BP algorithm and LSE
algorithm is beyond the scope of this paper. Please refer to the
cited works for complete coverage on the related topics.

User Interface

The design of the user interface is a key element in DSS func-
tionality. The interface of a DSS should provide easy communi-
cation between the user and the system (Turban 1995). In this
study, a graphic user interface (GUI) that was designed in the
MATLAB functions as the user interface component of the
NFDSS. Users invoke the NFDSS by launching the MATLAB
software and keying in the command line window the m-file
name of the GUI, which is MYNFDSS. The GUI component is
then loaded into the workspace. The introduction part of the GUI
is presented to users first (see Fig. 5). Users are asked to specify
for which type of risk they are going to use the NFDSS to forecast
efficient RA strategies. The prototype of the NFDSS only pro-
vides functions for three risks, as shown in Fig. 5. However,
based on user’s specific requirement, it is easy to adapt the
NFDSS for any particular risk. Then users are requested to
specify a PPP infrastructure project and provide information
about their specified PPP infrastructure projects that is required
for running the SynFIS including the information regarding envi-
ronmental uncertainty, partner’s RM routines, partner’s coopera-
tion history, partner’s RM commitment, and partner’s RM
capability (see, e.g., Fig. 6). Finally, after obtaining all required
information and data, the results generated by the SynFIS set are
presented as suggested efficient RA strategies in the GUI (see Fig.
7).

B Neuro-Fuzzy Decision Support System

Thank you for using NFDSS for forecasting efficient risk allocation strategy
in PPP projects

It may take you about 15 mins to provide data associated with your PPP
project and use another 5 mins to forecast an efficient risk allocation strategy
for the project

Please provide reliable information so that reliable forecast would be
obtained

Please select ONE type of risk below for forecasting
Then, please click <Forward> button to proceed if you are ready.

Or please click <Quit> button to quit NFDSS.

Political, Legislative & Regulative Risk
Demand below Anticipation Risk

Design Defects Risk

Quit Forward

Fig. 5. Introduction of GUI of NFDSS

Building NFDSS Prototype

The implementation of a system demonstrates the feasibility of
the design and the utility of the functionalities that are envisaged
(Nunamaker et al. 1990). Building a prototype system is a process
that allows insight into the problems and the complexity of a
system during development research. The NFDSS was built using
the MATLAB software packages. The body of the entire NFDSS,
including the database, the model base subsystem, and the user
interface, was written using the MATLAB programming lan-
guage. The prototype was run on the Windows XP platform.
The major task is the training of the model base subsystem
(SynFIS). The training data set was obtained in an industry-wide
questionnaire survey. Based on the theoretical framework, a set of
questionnaire was designed for the survey. The questionnaire
asked respondents to provide reliable information about a PPP
project, in which they had appropriate involvement and/or knowl-
edge. The main information to provide includes the evaluation of

P=FE )

B Neuro-Fuzzy Decision Support System

Regarding Design Defects Risk,
PRIVATE partner has an established analysis mechanism

(2 question(s) left)

Please respond by choosing the most appropriate answer.

Strongly Disagree
Disagree

Neutral

Agree

Strongly Agree

Back Forward

Fig. 6. Data collection of GUI for partner’s RM capability
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B Neuro-Fuzzy Decision Support System

Regarding Design Defects Risk and based on the information you provided,
the risk management (RM) specific investment from the private partner is low;
the RM cooperation between partners is low,

the RM commitment of the public partner is low;

the RM commitment of the private partner is low;

the RM capability of the public partner is low,

the RM capability of the private partner is low, and

the RM environmental uncertainty is medium

In order to achieve efficiency, the public partner may consider transfering most
or all of the Design Defects Risk to the private partner.

Quit Restart

Fig. 7. Results’ presentation of GUI of NFDSS

the aforementioned risk management service transaction charac-
teristics, the adopted RA strategies, and the perceived most effi-
cient RA strategies in the specified PPP projects. Respondents
were also required to provide information about their PPP expe-
rience and designation.

While RA strategies may vary from risk to risk and from
project to project, the mechanism of RADM remains the same for
different risks (Jin 2010; Jin and Doloi 2008b). Therefore, to fol-
low the triangulation concept in academic research (Hammersley
and Atkinson 2007) and facilitate a comparison of evaluation re-
sults among the NFDSS established in the current paper, the MLR
models in the work of Jin (2010), and the FIS in the work of Jin
and Doloi (2009), the results regarding three risks are reported in
this paper. The three selected risks are (1) “defects in design” in
development stage (coded as Rj); (2) “demand below anticipa-
tion” in operation stage (coded as R); and (3) “adverse changes
in law, policy, or regulations” during the life cycle (coded as R;).
They are selected for report because (1) they have been deemed
controversial and problematic in terms of their allocation (Carrillo
et al. 2006; Medda 2007; Ng and Loosemore 2007; Shen et al.
2006; Tiong 1990, 1995) and (2) they exist in different stages of
project life cycle. Similar strategies have been adopted in previ-
ous research (see, e.g., Kangari and Riggs 1989).

Following a pilot survey during a PPP workshop and conse-
quent refinement of the questionnaire, an industry-wide question-
naire survey was carried out in Australia. The target population of
the survey was all the professionals and decision makers, from
both public and private sectors, who have been involved in risk
management of PPP projects in Australia. Judgmental or purpo-
sive sampling was used, in which a sample is drawn using judg-
mental selection procedures (Tan 2004). The strategy for sample
selection was first to identify PPP infrastructure projects in Aus-
tralian market, then to identify major partners of the identified
projects, and finally to identify professionals and decision makers
in major partners’ organizations from public domain. In total, 386
questionnaires were distributed and 44 useful responses were re-
ceived. The survey response rate of 11.4% is acceptable for a
survey of this nature (De Vaus 2001). The profile of the respon-
dents is shown in Table 3. They were deemed appropriate to pro-
vide reliable response to the survey due to their ample experience

Table 3. Profile of Survey Respondents (Jin 2010)

Item Category Frequency (%)
Respondents’ designation Senior level 41 93.2
Middle level 3 6.8

Junior level 0 0.0

Respondents’ experiences =5 years 0 0.0
in construction industry 5-10 years 14 31.8
10-20 years 13 29.6

20-30 years 10 22.7

>30 years 6 13.6

Unknown 1 2.3

Respondents’ experiences None 0 0.0
in PPP projects 1-2 projects 10 22.7
3-5 projects 10 22.7

6-10 projects 16 36.4

>10 projects 8 18.2

in PPP projects and in the construction industry. The returned
questionnaires were checked and edited to ensure completeness
and consistency.

The training data set was further partitioned into two disjoint
subsets, i.e., the estimation subset used for model selection and
the validation subset used for model validation. The objectives
were to (1) assess the performance of various candidate models
and select the best one by validating the model on the validation
subset, which is different from the estimation subset and (2) guard
the selected model against the possibility of overfitting the vali-
dation subset by measuring the generalization performance of the
selected model on the test set, which is different from the valida-
tion subset (Haykin 1999).

The dilemma of a learning system is how to remain adaptable
enough to learn new things and yet remain stable enough to pre-
serve learned knowledge. In order to tackle this problem, the
beginning of overfitting was identified by using early stopping
training method (Amari et al. 1995b). The training session was
stopped in each epoch and the network was then tested on the
validation subset. This process was repeated until the initially
monotonically decreasing learning curve for validation started to
increase constantly. Early stopping training method has been
proved to be capable of improving the generalization performance
of the network over exhaustive training (Amari et al. 1995a).

In this study, the available data set was limited. The multifold
cross-validation method may thus be used (see Haykin 1999, p.
218). An extreme form of multifold cross validation, known as
leave-one-out method, was used in this study. In detail, 43 (i.e.,
44-1) data pairs were used to train the model and the model was
validated on the single data pair left out. The process was re-
peated for 44 times. At each time, a different data pair was left out
for validation. The root mean squared error (RMSE) under esti-
mation and validation was then averaged over the 44 rounds of
training, which are denoted by RMSE:'® and RMSE:Y, respec-
tively. The RMSE is defined as

n . 2
RMSE= />, zt) nt’) (8)
i=1

where x;=SynFIS-forecasted RA strategy in ith case; ¢
=suggested efficient RA strategy in ith case; and n=number of
cases, which is 44. The training results are presented in Table 4.
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Table 4. Training Results of SynFIS

Risk RMSEQ® RMSEY
0.0035 0.0098
0.0498 0.0433
3 0.0998 0.1893
Evaluating NFDSS

After the prototype of the NFDSS had been developed, it was
tested and evaluated. Through system evaluation, information can
be captured on whether the system meets the needs of users and
to what extent (Ngai and Wat 2005). First, all of the NFDSS
components were tested individually for accuracy. The trained
SynFIS, which is the model base subsystem, was then integrated
into the NFDSS and the system was tested collectively for accu-
racy and completeness. These tests ensured that the designed
functions of the NFDSS could be performed appropriately.

The test data set was obtained from a panel of five experts.
The experts were asked to respond to the survey questionnaire
and each provides information of a PPP project. The profile of the
experts is shown in Table 5. Their responses are deemed reliable.
The results based on the test data set when using NFDSS were
compared with those using MLR technique (see Jin 2010) and
those using FIS models (see Jin and Doloi 2009).

A set of performance indices was used, which included error
(e), percentage error (PE), mean percentage error (MPE), mean
absolute percentage error (MAPE), and RMSE. These perfor-
mance indices have been adopted in many previous research
works (e.g., Jang 1993; Soetanto and Proverbs 2004; Liu and
Ling 2005; and many others). Except for RMSE, which has been
defined previously, the performance indices are defined as fol-
lows:

e;=T;-0, )
Ti_Oi

PE; = ——— X 100% (10)

MPE= > PE, / n (11)
i=1

MAPE= >, [PE| / n (12)

i=1

where n=>5, which is the number of testing data pairs, and 7; and
O;=ith target output and calculated output, respectively.

The ratings of the six IVs for each test case regarding three
risks were fed into the NFDSS prototype and the established FIS
models (see Jin and Doloi 2009). The ratings of the identified
independent variables for each case were fed into the set of es-
tablished MLR models (see Jin 2010). The efficient RA strategies
forecasted by the models were compared to those specified by the

Table 5. Profile of Experts (Jin and Doloi 2009)

experts. The evaluation results of NFDSS’ accuracy are shown in
Tables 6 and 7. For each of the five cases regarding each risk, the
lower value of each performance index was highlighted in bold.
In Table 6, regarding each risk, the NFDSS generated lower e and
PE. This indicates that the NFDSS is accurate and consistent in
terms of forecast performance.

Furthermore, in Table 7, regarding all three risks under analy-
sis, the upshot is that the performance of the NFDSS in terms of
RMSE, MPE, and MAPE is much better than that of the MLR
and FIS models. Compared with MLR models, NFDSSs have
averagely achieved a significant improvement in RMSE by
87.80%, MPE by 94.15%, and MAPE by 92.45%. Compared with
FIS models, NFDSSs have also achieved a considerable improve-
ment in RMSE by 82.43%, MPE by 91.47%, and MAPE by
89.98%. The comparison is demonstrated in Figs. 8(a—c). It is
noted that, across the three performance indices, errors of NFDSS
regarding R; are marginally higher than those regarding R, and
R,. Although it has little effect on NFDSS forecast performance,
the probable explanation would be that it is relatively more diffi-
cult to accurately forecast efficient allocation strategies for risks
lingering throughout the life cycle of a project, such as R;.

Taking R; as an example, the NFDSS may generate an error of
+0.1113 in average, may have the propensity to overforecasting a
bit (+2.2728%), and may contain 2.7400% error in the forecast
averagely. In comparison, the MLR and FIS models may, respec-
tively, generate errors of =0.7428 and *=0.3649 in average, may
have the propensity to underforecasting by —19.7632 and
—11.7053%, and may contain 31.9375 and 14.9613% errors in
the forecast averagely. That is to say, for instance, when an effi-
cient RA strategy for R; is supposed to be “equally shared by
partners” (or 3 on a five-point Likert scale), the relevant NFDSS
generally gives an accurate forecast while the relevant MLR and
FIS models may suggest “shared by partners but either public or
private partner takes a much higher portion of the risk” (or 2 or 4
on a five-point Likert scale). Given the subjective nature of the
judgments by the respondents and interviewees, it can be con-
cluded that the developed NFDSS is valid and robust and has
captured the essential components of the underlying nonlinear
and uncertain dynamics.

The efficacy of a system is usually determined through evalu-
ations by potential users against the criteria of its effectiveness,
which is the ability of the system to accomplish its objectives, and
its usability, which is the ease of use of the system (Gasching et
al. 1983). In this study, an evaluation form was designed based on
these criteria. The effectiveness and usability of the NFDSS were
measured using five questions on a five-point Likert scale, which
include 1 (strongly disagree), 2 (disagree), 3 (undecided/neutral),
4 (agree), and 5 (strongly agree). Consequently, the ability of the
system to accomplish its objectives and the ease of use of the
system were reflected. The evaluation results of the NFDSS’ ef-
ficacy were used as the other indicator of the success or failure of
the NFDSS.

The efficacy of NFDSS was evaluated by the experts who
were invited to provide data for testing the accuracy of the

Expert 1 Expert 2 Expert 3 Expert 4 Expert 5
Designation Director Senior partner Partner General manager Project director
Affiliation Contractor Consultant Consultant Contractor Public client
Experience in construction industry (years) 36 23 25 25
Experience in PPP projects (number) 12 10 8 18
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Table 6. Comparison of Evaluation Results among NFDSS, MLR, and FIS Models (e and PE)

NFDSS MLR FIS

PE PE PE

Risk Case e (%) e (%) e (%)
Rp 1 —0.0047 —0.2325 —0.1441 —7.2049 0.5000 25.0000
2 0.0004 0.0184 0.5672 28.3600 0.5008 25.0400
3 —0.0004 —0.0352 —0.9440 —94.4000 —0.4942 —49.4200
4 0.1467 4.8887 —0.2700 —9.0006 0.0000 0.0000
5 —0.0314 —3.1359 0.2265 22.6505 —0.5000 —50.0000
Ry 1 0.0063 0.3138 —0.4404 —22.0182 0.5280 26.4000
2 0.0226 0.7548 0.2170 7.2333 0.0000 0.0000
3 0.0234 2.3397 —0.1414 —14.1415 —0.4212 —42.1200
4 —0.0094 —0.9443 —0.6025 —60.2533 —0.4998 —49.9800
5 —0.0607 —6.0724 —0.1292 —12.9197 —0.5000 —50.0000
Ry 1 0.2065 4.1300 1.1284 22.5690 0.4070 8.1400
2 0.0322 1.0718 0.2360 7.8667 0.0000 0.0000
3 —0.0350 —1.1680 —0.1156 —3.8517 —0.5000 —16.6667
4 0.0310 3.0958 —1.1400 —114.0000 —0.5000 —50.0000
5 0.1270 4.2342 —0.3420 —11.4000 0.0000 0.0000

NFDSS. They were deemed as potential users because they were
among the RA decision makers in their PPP infrastructure
projects. The NFDSS was demonstrated to the five experts and
they were asked to evaluate the NFDSS by answering the ques-
tions in the evaluation form. Their responses are summarized in
Table 8. Most potential users strongly agreed that the NFDSS is
easy to understand and use (with a mean score of 4.8) and easy to
interact with (with a mean score of 4.6). They also agreed that the
NFDSS is an effective decision support tool (with a mean score of
4.0) and can provide reliable (with a mean score of 4.2) and
practical results (with a mean score of 4.4). Based on the results

Table 7. Comparison of Evaluation Results among NFDSS, MLR, and
FIS Models (RMSE, MPE, and MAPE)

Performance
index Model Rp Ry R;
RMSE NFDSS 0.0671 0.0312 0.1113
MLR 0.5211 0.3580 0.7428
Improvement (%) 87.12 91.28 85.01
FIS 0.4461 0.4373 0.3649
Improvement (%) 84.95 92.86 69.48
MPE (%) NFDSS 0.3007 —-0.7217 2.2728
MLR —11.9190 —20.4199 —19.7632
Improvement (%) 97.48 96.47 88.50
FIS —9.8760 —23.1400 —11.7053
Improvement (%) 96.96 96.88 80.58
MAPE (%) NFEDSS 1.6621 2.0850 2.7400
MLR 32.3232 23.3132 31.9375
Improvement (%) 94.86 91.06 91.42
FIS 29.8920 33.7000 14.9613
Improvement (%) 94.44 93.81 81.69

of the evaluation, the NFDSS prototype was seen as a promising
system for selecting efficient RA strategies for PPP infrastructure
projects.

Application of NFDSS to a Real PPP Infrastructure
Project

The established NFDSS is applied to the process of forecasting
efficient RA strategy for “demand risk” (R,) of the EastLink PPP
project (the project) in Melbourne, Australia. The project, with a
construction cost of AUS$2.5 billion, is the largest road project
ever constructed under the Victorian Government’s Partnerships
Victoria policy (VIC DOI 2004). The 39-km-long motorway pro-
vides a vital connection for the 1.5-million people living in Mel-
bourne’s eastern and southeastern suburbs and the key industrial
areas along the project corridor (SEITA 2007).

The private consortium (ConnectEast Pty Limited, Victoria,
Australia) financed, designed, and constructed the EastLink free-
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Fig. 8. Comparison of evaluation results among NFDSS, MLR, and
FIS models
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Table 8. Results of Evaluation of NFDSS Prototype by Potential Users

Number Statement Median Mean

1 The system is easy to understand and use 5 4.8
The system is easy to interact with 5 4.6

3 The system provides an effective means to determine optimal 4 4.0

RA strategies for PPP infrastructure projects
4 The system generates reliable information about optimal RA 4 4.2
strategies in PPP infrastructure projects
5 The system generates practical information about optimal RA 4 44

strategies in PPP infrastructure projects

way including the provision of the tolling system. The private
sector will also provide operation, maintenance, repair, security,
and other customer services for the freeway for a period of 35
years (SEITA 2007). At the end of the concession period, the
freeway and its plant and equipment will be handed over to the
Victorian Government (VIC DOI 2004). In return, the govern-
ment allows the private sector to toll the road during the opera-
tional phase of the project. However, the government required the
private sector to entirely assume the demand risk. That is, debt
repayments to the financiers from the contractor are based on
usage payments only.

After relevant data had been collected, the NFDSS proceeded
by running the embedded programs. The IVs and OVs of the
NFDSS are presented on the results’ GUI, as shown in Fig. 9.
These variables are presented in linguistic values rather than nu-
meric values so that the imprecision and uncertainty intrinsic in
language can be addressed. It can be seen that the private part-
ner’s capability to tackle the demand risk is low while the public
partner’s capability is high. General environment for managing
the risk is highly uncertain although both sectors are holding high
commitment to managing the risk. Under such circumstances,
transferring demand risk to the contractor would result in a higher
price to manage the risk and even create additional significant
risks for both parties (NAO 1999). The efficient RA strategy fore-
casted by the NFDSS thus suggests that government bears most
or all of demand risk, which does not match the strategy that was
adopted in the project (X.-H. Jin, “A framework for efficient RA

B Neuro-Fuzzy Decision Support System

Regarding Demand below Anticipation Risk and based on the information you
provided,

the risk management (RM) specific investment from the private partner is high;
the RM cooperation between partners is high;

the RM commitment of the public partner is high;

the RM commitment of the private partner is high;

the RM capability of the public partner is high;

the RM capability of the private partner is low, and

the RM environmental uncertainty is high

In order to achieve efficiency, the public partner may consider transfering none
or little of the Demand below Anticipation Risk to the private partner.

Quit Restart

Fig. 9. Application of NFDSS to the EastLink PPP project: results’
presentation of GUI regarding demand risk (Ry)

in public-private partnership projects using neuro-fuzzy tech-
niques,” unpublished Ph.D. thesis, The University of Melbourne,
Melbourne, Australia, 2009). Since the project had not formally
entered into the operation stage when this study was completed,
whether or not the adopted strategy is efficient could not be veri-
fied. However, a review of traffic by ConnectEast in 2009 re-
vealed a major shortfall between observed volumes and revenues
and projections made in 2004, with a maximum shortfall in aver-
age daily volumes only being 40% of the projections made in
2004 (Chappell 2009b). As a result, ConnectEast has booked a net
loss of AU$531.58 million for the year ended June 30, 2009 and
written down the value of its EastLink toll road concession by
AU$400 million to about AU$2.9 billion (Chappell 2009a). The
impact on the users is that the average trip toll was further up
5.2% on November 2009 (The Age 2009). It is now obvious that
the value for money expected from transferring demand risk to
the private partner has not been achieved in the EastLink PPP
project.

Conclusion

RA plays a critical role in PPP infrastructure projects. Project
success (or failure) is contingent on whether the adopted RA strat-
egy can lead to efficient risk management (or not). Previous re-
search has tried to model RADM process by using traditional
probability-based approaches such as MLR technique. However,
the resultant models cannot be used to accurately forecast effi-
cient RA strategies due to the inherent limitations in probability-
based analysis, such as not considering nonlinear relationship and
failing to identify all the factors necessary to reflect realistic situ-
ations. In this paper, the neurofuzzy approach was innovatively
and successfully applied to establishing a NFDSS for facilitating
efficient RA in PPP infrastructure projects, which had not been
attempted in any previous research. Neurofuzzy approach was
chosen because it combines the strengths of ANNs and FISs and
thus possesses strong learning ability and the capability to handle
unspecificity, uncertainty, nonlinearity, and complexity.

In this study, an established theoretical framework drawing on
the TCE and the RBV of organizational capabilities was adopted
as the architecture of the kernel component of the NFDSS. The
NFDSS comprises three interrelated components, namely, (1) da-
tabase; (2) model base subsystem; and (3) user interface. The
four-stage development process of the NFDSS includes (1) de-
signing the architecture of the NFDSS; (2) defining and designing
the functionalities of the system components and their interaction;
(3) building the prototype of the NFDSS; and (4) evaluating the
NFDSS by potential users.

The core component of the NFDSS is a SynFIS. ANNs and
FISs were integrated into each other to build the SynFIS, which
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serves as the model base subsystem of the NFDSS. The learning
process of the SynFIS was implemented in two sequential learn-
ing modules, which are SLM and PLM. The prototype SynFIS
was established through an innovative training process based on
the data obtained in a questionnaire survey. The prototype of the
NFDSS was evaluated by a comparison with MLR and FIS mod-
els. The evaluation results indicated that the NFDSS performs
much more efficiently and reliably in terms of accuracy and effi-
cacy.

The results have further confirmed that when making decisions
on RA strategies for PPP projects, decision makers should care-
fully analyze and evaluate partners’ RM routines, commitment,
capability, and cooperation history. Various environment uncer-
tainty factors should also be taken on board. Although these vari-
ables wusually bear their inherent features of unspecificity,
uncertainty, nonlinearity, and complexity, with the established
NFDSS, RADM process in PPP infrastructure projects now can
be successfully modeled and efficient RA strategies now can be
accurately forecasted. This neurofuzzy model, with its user-
friendly GUISs, is expected to help industrial professionals to se-
lect optimal RA strategies to achieve efficient risk management
and the ultimate project success when adopting PPP procurement
models.
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