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Introduction

There is a growing need, especially in light of homeland security,
for maintaining the reliability, sustainability, and robustness of
national infrastructure systems, including road, water, electrical,
and rail systems. However, many facilities in the United States
infrastructure systems are in disrepair and are not able to adapt to
new service requirement in a fast changing world. For example,
as of December 2001, about 14.2% of highway bridges in the
United States were considered structurally deficient, and another
13.8% were deemed functionally obsolete �Federal Highway Ad-
ministration 2001�. One major reason is that the decision making
in infrastructure development and operation under uncertainty is
far from optimality, reliability, and flexibility.

Comprehensive infrastructure development and management
require a life-cycle perspective, or an integrative consideration of
planning, design, construction, service, inspection, maintenance,
and decommissioning. Analysis based on life-cycle costing has
been implemented by various researchers, including Thoft-
Christensen and Sorensen �1987�, Wirsching and Ortiz �1990�,
Estes et al. �1997�, Hearn and Shim �1998�, Abaza �2002�, and
Zayed et al. �2002�. Markov decision processes have been used to
model infrastructure management decision making �e.g., Golabi

and Thompson 1990; Ben-Akiva et al. 1993; Madanat 1993a,b;
Scherer and Glagola 1994; Tao et al. 1995; Smilowitz and
Madanat 2000�, which yield management policies with least ex-
pected costs. Real options approach models infrastructure man-
agement processes as contingent decision making and is capable
of yielding optimal solutions in light of multiple uncertainties by
using least squares Monte Carlo simulation method �Zhao et al.
2004�. However, the optimality in decision making is on an ex-
pected basis, or a risk-neutral basis. That is, the alternative with
the maximum expected benefit or minimum expected cost would
be selected without regard to any other factors, such as variance.
This may not meet the requirement of reliability, in the sense that
system failure has a high probability to prevail, though the deci-
sion is viable on an expected value basis. At the same time, risk
neutrality may not reflect decision makers’ actual risk preference.
In fact, decision makers in civil engineering tend to be conserva-
tive and prefer alternatives with high reliability.

An improved real-options approach is developed for optimal
decision making based on decision maker’s risk preference in
infrastructure development and management in this paper. Differ-
ent from traditional real-options approach, the contingent decision
making in the proposed approach does not rely on risk neutral
optimization, and it not only integrates decision maker’s risk pref-
erence, but also achieves optimality for reliability and sustainabil-
ity. The proposed approach contributes to the literature by making
a radical shift in the decision process, moreover its practical sig-
nificance is substantiated by integrating decision making with de-
cision maker’s risk preference, and even achieving sustainability

In this paper, the decision-making process is modeled as a
multistage stochastic problem with uncertainty modeled by lat-
tice. The decision maker �DM� is assumed to maximize her risk-
preference based utility which may be very different from the
overall net profit. We have applied the proposed approach to a
case study of constructing a parking garage. We demonstrate that
the proposed method can select an optimal alternative according
to DM’s preference. In this paper, we limit our research attention
to infrastructure development and expansion decisions, but it can
be seen that the proposed method can also be easily extended to
incorporate such infrastructure management decisions as inspec-
tions, maintenance, repair, and rehabilitation.
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The remainder of this paper is organized as follows: The math-
ematical formulation for risk-preference based decision making
processes under uncertainty and solution method will be first pre-
sented. Then the proposed approach is implemented on binomial
lattice. Finally, we conclude the paper after demonstrating the
proposed approach by a case study of constructing a parking
garage.

Risk-Preference Based Decision Making Modeling

The process of infrastructure development and management usu-
ally consists of planning, preliminary design, final �detailed� de-
sign, and construction. After the infrastructure facility is com-
pleted, ongoing operation and service, maintenance, and
rehabilitation activities continue until the end of the life cycle,
and finally the facility decommissions. Although there are various
decisions in the life cycle of an infrastructure facility, we will
only focus on infrastructure development and expansion
decisions in order to demonstrate the proposed approach in a
straightforward way.

In this paper, an infrastructure facility is viewed as a dynamic
system. The condition of the infrastructure facility is represented
by a set of discrete states, and vt denotes the system state at time
t. The variable representing development and expansion decision
at time t is represented by ut, and ut�Ut, where Ut is the set of
available decisions or real options at time t. The realized value at
time t of the underlying uncertainty, such as demand, is denoted
by Dt. The timing of event occurrence is as follows. Assume that
under state vt at time t, the uncertainty vector Dt is revealed.
Upon observing Dt, the DM: �1� must realize the current system
revenue f t�vt ;Dt�, where f t�vt ;Dt� is revenue function of the in-
frastructure system in time period t under state vt, conditioned on
the uncertainty realization of Dt at time t; and �2� can strategically
utilize available flexibility by making a decision ut with a cost of
ct�ut ,vt� incurred, where ct�ut ,vt� is cost function for making de-
cision ut under state vt at time t.

Let Ft�vt ;Dt� be a function indicating the total expected value
�expected profit� of the system for the remaining period at state vt

at time t, and it can be formulated as the following recursive
relation:

Ft�vt;Dt� = f t�vt;Dt� + e−rEt�Ft+1�vt+1;Dt+1�� − ct�ut,vt� �1�

where r=discount rate. In addition, Et denotes the expectation
operator, and the subscript t indicates that the expectation is based
on the available information for uncertainty at time t.

In traditional stochastic dynamic programming, the objective
is to maximize the expected system value �ESV�, then the deci-
sion ut is selected by solving the following optimization problem:

max
ut

�e−rEt�Ft+1�vt+1;Dt+1�� − ct�ut,vt�� �2�

and

vt+1 = H�vt,ut� �3�

where H�·�=state transition function, and it is assumed that the
state transition process can be finished in a time period.

This optimization in Eq. �2� is on a risk-neutral basis, in the
sense that decision alternative selection only relies on its expected
value, and all the other factors, such as variance, are overlooked.
However, this assumption does not reflect the DM’s actual risk
preference, because in fact, decisions are made conservatively in
the field of civil engineering to maintain infrastructure reliability

and safety. Even though some researchers impose risk-adjusted
discount rate to capture the DM’s preference, the DM is still
risk-neutral because of the fact that alternative selection only de-
pends on expected value. Therefore, there is a need to model the
decision making according to DM’s risk preference.

In our proposed methodology, contingent decision ut is se-
lected by maximizing the DM’s utility representing her risk pref-
erence. The DM’s risk preference is measured by the certainty
equivalent �CE� of a random wealth variable �Luenberger 1998�.
Given a random wealth variable, if its CE of the DM is less than
the expected value of this random variable, then the DM is risk-
averse; if its CE equals to its expected value, then the DM is risk
neutral; otherwise, the DM is risk preferring. The function repre-
senting the CE C�·� of a random wealth variable w, subject to
normal distribution N�� ,�2� is defined as follows:

C�w,q� = ��−1�q� + � �4�

where ��·�=normal cumulative density function, and
�−1�·�=inverse normal cumulative density function. Probability
q, defined as risk preference factor, represents the level of the
DM’s risk preference, and 0�q�1. It is easy to verify that if
q�0.5, the DM is risk averse, and with the decrease of q, risk
aversion increases; if q=0.5, the DM is risk neutral; otherwise,
the DM is risk preferring. For any DM, she would like to select
the alternative which brings her the maximum CE of the random
wealth. Thus the decision upon observing vt and Dt at time t can
be obtained by solving the following optimization problem:

max
ut

�C�Gt�vt,ut;Dt�,q�� �5�

Note that the CE can be obtained by directly measuring the DM’s
utility �Luenberger 1998�, thus given the mean and variance of a
risky alternative, the risk preference factor q can be reached by
the following equation:

q = ��C�w,q� − �

�
� �6�

Next, we will present how to determine parameters for
function C�·�.

Given the state vt, decision ut, and the realized uncertainty Dt,
the present worth of the net revenue stream from time t until the
end of planning horizon is a random variable, denoted as
Gt�vt ,ut ;Dt�. Suppose �� �t+1���T� is selected by maximizing
the DM’s utility representing her risk preference. Thus

Gt�vt,ut;Dt� = f t�vt;Dt� + e−rGt+1�vt+1,ut+1;Dt+1� − ct�ut,vt�

�7�

Note that the relationship between vt and vt+1 in Eq. �7� is subject
to Eq. �3�, and Dt+1 is conditional on Dt. Approximately,
Gt�vt ,ut ;Dt� is subject to a nonstandard normal distribution
N�� ,�2�. We assume Dt is realized and ut is selected with regard
to the maximization criterion defined in Eq. �5�, then it can be
easily seen that

� = Et�Gt�vt,ut;Dt�� = Ft�vt;Dt� �8�

�2 = Var�Gt�vt,ut;Dt�� = Et�Gt�vt,ut;Dt�2� − �Et�Gt�vt,ut;Dt���2

�9�

where Et�Gt�vt ,ut ;Dt�2� can be derived by the following recursive
relation:
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Et�Gt�vt,ut;Dt�2� = Et��f t�vt;Dt� + e−rGt+1�vt+1,ut+1;Dt+1�

− ct�ut,vt��2� = Et��f t�vt;Dt� − ct�ut,vt��2�

+ Et�2e−r�f t�vt;Dt� − ct�ut,vt��

�Gt+1�vt+1,ut+1;Dt+1��

+ Et�e−2rGt+1�vt+1,ut+1;Dt+1�2� �10�

Since Dt is realized and ut is selected at time t, it is obvious that
�f t�vt ;Dt�−ct�ut ,vt�� is deterministic, or

Et��f t�vt;Dt� − ct�ut,vt��2�

= �f t�vt;Dt� − ct�ut,vt��2 �11�

Et��f t�vt;Dt� − ct�ut,vt��Gt+1�vt+1,ut+1;Dt+1��

= �f t�vt;Dt� − ct�ut,vt��Et�Gt+1�vt+1,ut+1;Dt+1�� �12�

Thus Eq. �10� is reduced to

Et�Gt�vt,ut;Dt�2� = �f t�vt;Dt� − ct�ut,vt��2

+ 2e−r�f t�vt;Dt� − ct�ut,vt��

�Et�Gt+1�vt+1,ut+1;Dt+1��

+ e−2rEt�Gt+1�vt+1,ut+1;Dt+1�2� �13�

Once � and � are obtained, then the CE of Gt�vt ,ut ;Dt� can be
obtained by Eq. �4�.

Given the uncertainty is modeled as lattice, the selection of an
appropriate decision making policy can be solved by a stochastic
dynamic programming �SDP� approach. This approach applies
backwards calculations to determine the optimal system value and
alternative selection in the decision making processes.

Implementation on Binomial Lattice

Discrete tree/lattice representations of stochastic processes have
been proposed to model uncertainty variables �e.g., Sharpe 1978;
Cox et al. 1979; and Rendleman and Barter 1979�. Binomial tree/
lattice is a simple and versatile model. Assume that the value of
the uncertainty variable is known to be D at the beginning of a
period. Suppose that it is known that after one time period the
value of the uncertainty will be either uD or dD with probabilities
p and 1− p, respectively. The multiples u ��1, for up� and d ��1,
for down� are positive constants. Repeating this process to the
second period, third period, and so on, results in a �binomial�
lattice of the uncertainty, which represents its evolution over time.
The term binomial is used because each branching involves only
two possible outcomes and that all outcomes at each time period

in the lattice follow a binomial distribution. By a binomial model,
Trigeorgis and Mason �1987� and Trigeorgis �1996� value real
options, such as option to defer, option to expand, and option to
contract. The lattice models have been applied in valuing real
investment opportunities in research and development �R&D�
projects, for example, Herath and Park �1999�, Huchzermeier and
Loch �2001�, and Park and Herath �1999�. The trinomial model is
similar to the binomial model, which can be seen in an extensive
literature �e.g., Luenberger 1998�. Zhao and Tseng �2003� model
the evolution of parking demand by a trinomial lattice and it is
used to evaluate different alternatives and calculated correspond-
ing flexibility values. Since the major contribution of this paper
does not lie in lattice construction, we shall use a binomial lattice
to illustrate our methodology, and it can be easily extended to
another format of lattices, such as trinomial lattices.

In order to implement the risk-preference based approach on
lattice model, we first develop the recursive relations for a single-
period case. In this paper, the demand is assumed to be the only
uncertainty considered. The demand at time t is denoted as Dt. At
time t+1 the demand will either be Dt+1

u with probability p or Dt+1
d

with probability 1− p, where Dt+1
u =uDt and Dt+1

d =dDt, as shown
in Fig. 1�a�. We assume that a decision ut is made at time t upon
observing demand uncertainty Dt and system state vt. After deci-
sion ut is made, the state at t+1 will become vt+1 when the de-
mand at t+1 is either Dt+1

u or Dt+1
d , as shown in Fig. 1�b�. The

values, Ft�·�, and Et�Gt�·�2�, corresponding to realized demand
shown in Fig. 1�a�, are shown in Figs. 1�c and d�. From Eqs. �1�
and �13�, the recursive relations for Ft�·� and Et�Gt�·�2� are as
follows:

Ft�vt;Dt� = f t�vt;Dt� + e−r�pFt+1�vt+1;Dt+1
u �

+ �1 − p�Ft+1�vt+1;Dt+1
d �� − ct�ut,vt� �14�

Et�Gt�vt,ut;Dt�2� = �f t�vt;Dt� − ct�ut,vt��2 + 2e−r�f t�vt;Dt� − ct�ut,vt���pEt+1�Gt+1�vt+1,ut+1;Dt+1
u �� + �1 − p�Et+1�Gt+1�vt+1,ut+1;Dt+1

d ��� + e−2r

��pEt+1�Gt+1�vt+1,ut+1;Dt+1
u �2� + �1 − p�Et+1�Gt+1�vt+1,ut+1;Dt+1

d �2�� = �f t�vt;Dt� − ct�ut,vt��2 + 2e−r�f t�vt;Dt� − ct�ut,vt��

��pFt+1�vt+1;Dt+1
u � + �1 − p�Ft+1�vt+1;Dt+1

d �� + e−2r�pEt+1�Gt+1�vt+1,ut+1;Dt+1
u �2� + �1 − p�Et+1�Gt+1�vt+1,ut+1;Dt+1

d �2���15�

After plugging Eq. �15� into Eq. �9�, we obtain the variance of
Gt�vt ,ut ;Dt�, and its mean can be obtained by Eq. �14�. Then the

most preferred alternative can be selected by Eq. �5�.
The above single period process can be easily extended to a

Fig. 1. Binomial branching
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multiperiod case with similar procedures. The single-period pro-
cess is just repeated at every node of the lattice, starting from the
final period and working backward toward the initial time.

Numerical Example

In this section, we present a case study to illustrate the application
of the methodology of this paper. First, data for uncertainty mod-
eling and cost parameters need to be obtained. Second, a binomial
lattice is established to model the evolution of uncertainty. Third,
the available states, the real options �or available alternatives�
corresponding to each state, and even state transition relations
need to be identified. Finally, the revised stochastic dynamic pro-
gramming procedures described in previous sections are applied
to determine the appropriate alternative and corresponding values.

Zhao and Tseng �2003� address that an enhanced foundation is
viewed as a real option for vertical expansion in the future, in the
sense that it provides the DM the flexibility to expand the facility
vertically whenever it is preferred. Due to the irreversibility of
construction, the expansion of a constructed facility requires the
foundation to be enhanced beyond immediate needs. They present
a case study of determining the optimal size of the foundation and
corresponding maximum system value using a real options ap-
proach based on risk-neutral optimization. They not only show
the value of flexibility in facility expansion due to uncertainty, but
also justify the claim in the literature of real options that tradi-
tional discount cash flow methods tend to underestimate the alter-
natives with flexibility. Although we use a case study with similar
basic data, we illustrate a different methodology for infrastructure
development and expansion, the risk-preference based decision
making method; moreover, we also examine the relationship be-
tween risk preference and alternative selection.

A case study of constructing a parking garage for illustration
purpose is presented below. The cost data are compiled based on
a feasibility study done by a public agency in the Washington,
D.C. area. Parking demand is the only uncertainty considered in
this case study. The initial daily demand when the garage is just
built is assumed to be 250 units of parking spaces. The evolution
of demand is modeled by a binomial lattice with u=1.2, d=0.9,
and p=0.6. Assume that each parking space can generate a net
revenue of $2,000/year from parking fees, denoted by 	 �gross
revenue minus operation and maintenance cost�. The garage will
have multiple levels, and each level can accommodate 100 park-
ing spaces, denoted by m. The fixed cost 
 f for initial foundation
construction is $400,000, and the variable cost 
v is $100,000/
level. The variable cost 
s of superstructure and miscellaneous for
initial construction is $700,000/level, and expanding an additional
superstructure will cost $750,000, denoted by 
e.

Note that the parameters for modeling the evolution of uncer-
tainties can be estimated based on historical data. For example,
Zhao and Tseng �2003� demonstrate how to estimate the drift and
volatility of the parking demand for a parking facility. More tech-
nical issues about parameter estimation, such as data requirement,
computation efficiency, and estimation consistency, can be found
in Matasov �1998�. Given the drift and volatility of an uncertainty
variable, u, d, p can be easily obtained. Interested readers please
refer to Luenberger �1998�.

The foundation size �or strength� of the facility, denoted by N,
can be represented in terms of the maximal number of levels of
superstructure, which the foundation can support safely �Zhao and
Tseng 2003�. Now the state variable vt represents the number of
levels of the facility in time period t, and therefore N−vt repre-

sents the number of additional levels the facility can expand
safely. The unit of time t is in years, and at the beginning of each
year, the DM makes expansion decisions �including the decision
that she chooses not to expand the facility� upon observing the
realized demand uncertainty, and the decision variable ut

represents the number of levels decided to expand, where
0�ut�N−vt, or Ut= �ut 	ut� �0,N−vt��. The problem is to deter-
mine the optimal foundation size N and the initial number of
levels to construct �v0� at time 0. In the analysis below, we shall
not only demonstrate the optimal design of the facility according
to the DM’s risk preference, N and v0, but also examine the rela-
tionship between alternative selection and the DM’s risk
preference.

Assume that the demand for parking spaces at time t is de-
noted by Dt, t=0,1 ,2 , . . . ,T. Given the initial foundation size N,
the value function f t�·� and expansion cost function ct�·� are de-
fined for the case study as follows:

f0�v0;D0� = − 
 f + 
vN + 
sv0 �16�

f t�vt,Dt� = 	 min�Dt,vtm� �17�

ct�vt,ut� = 
eut �18�

where f0�·�, f t�·�, and ct�vt ,ut� �t� �1,T�� represent the costs of
initial foundation and superstructure construction, net revenue in
period t, and expansion cost incurred in period t, respectively.

The planning horizon of this case study is set to 15 years with
a salvage value of 0 for the garage. The discount rate in this case
study is assumed to be 5%, which corresponds to a discount fac-
tor of e−0.05=0.9512. We also assume the DM’s risk preference
factor q is 0.2. By using the proposed approach, we obtain that
the optimal initial foundation and superstructure design is N=4,
v0=3. The foundation is enhanced to support expansion of 1 ad-
ditional level during the initial construction. The optimal CE is
$2,509.4K, and corresponding ESV is $3,128.3K. Detailed results
for different design alternatives, including CEs, ESVs, and stan-
dard deviations of system values are given in Tables 1–3, respec-
tively. Since the objective of optimization is to maximize the CE
of system value, not to minimize the variance or maximize the
ESV, the optimal alternative �N ,v0�= �4,3� does not necessarily
produce a minimal standard deviation or a maximum ESV. If
different alternatives are evaluated in terms of expected system
value, �N ,v0�= �5,3� would be chosen, in the sense that the foun-
dation would be enhanced to support one more level of super-
structure which may be expanded in the future compared to the
optimal alternative in terms of the DM’s certainty equivalent.
Since q=0.2, the DM is risk averse, and the decision she makes is

Table 1. Certainty Equivalent �$103� of System Values of Design Alter-
natives

Initial
number
of levels
n0

Initial foundation reserve �levels�, N−n0

0 1 2 3 4 5 6

1 779.1 1,842.4 2,354.6 2,409.4 2,328.5 2,218.1 2,106.7

2 1,892.4 2,404.6 2,459.4 2,378.5 2,268.1 2,156.7 2,050.0

3 2,454.6 2,509.4 2,428.5 2,318.1 2,206.7 2,100.0 1,997.4

4 2,322.3 2,251.8 2,146.8 2,038.3 1,933.0 1,830.8 1,730.2

5 1,836.2 1,733.4 1,626.7 1,522.4 1,420.6 1,320.0 1,220.0

6 1,176.6 1,070.1 966.1 864.5 764.1 664.1 564.1

7 426.1 321.8 220.2 119.7 19.7 −80.3 −180.3
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less aggressive than the alternative selected based on maximiza-
tion on ESV. However, alternative �N ,v0�= �4,3� is also better
than �N ,v0�= �5,3� in terms of standard deviation of system
value, which means the risk is reduced for a risk-averse DM.
Furthermore, some design alternatives, such as �N ,v0�= �12,7�
which are viewed profitable in terms of expected system value,
are considered unprofitable by this risk-averse DM.

Next we explore the relation between the optimal ESV and the
DM’s risk preference. The results are summarized in Table 4.
When q is less than 0.5, the ESV increases with the increase of q;
when q is greater than 0.5, the ESV decreases with the increase of
q; and the highest optimal ESV is reached at q=0.5. Although this
general trend seems very intuitive, the detailed quantitative rela-
tion is not obvious. When q=0.5, the DM is risk neutral. All
decisions made in the whole planning horizon are in terms of
maximization on ESV. If we evaluate the decisions made when q
is other than 0.5, it is easy to see that they are suboptimal in this
optimization. And the more q deviates from 0.5, the smaller the
optimal ESV we obtain. In addition, the alternative corresponding
to optimal ESV is not sensitive to the change of q, and keeps at
�N ,v0�= �5,3�. That is due to the insensitivity of optimal ESV, for
example, the difference of optimal expected system values be-
tween q=0.5 and q=0.9 is only −3.95%.

We also examine the relation between the optimal CE and the
DM’s risk preference. The results are summarized in Table 5,
from which we can find that the general trend is very straightfor-
ward. When q increases, the optimal CE of system value also
increases. And the optimal certainty equivalent is very sensitive to
the change of q, for example, the difference of that value between
q=0.5 and q=0.9 is 48.03%. That is because q reflects the DM’s

risk preference directly, and the higher q is, the more risk-
preferring the DM is. Accordingly, with the increase of q, the DM
tends to build a larger size of foundation and more levels of
superstructure, or in other words, she becomes more aggressive in
infrastructure investment and construction. In addition, the ESV
corresponding to the recommended alternative shows the similar
property to the optimal ESV, as illustrated in Table 4.

The proposed methodology can also be used to evaluate ex-
pansion decisions after the facility is constructed. We assume that
parking garage has been built and used for a number of years,
thus f0�v0 ;D0�=0. Currently the garage has two levels �v0=2�
and the foundation can support two additional levels �N=4�. Sup-
pose the risk performance factor q is still 0.2 and a planning
period of 15 years is used. As shown in Table 6, the optimal
expansion decision is to expand one additional level of super-
structure. This alternative provides the optimal CE, $4659.4K,
and coincidentally, the expected system value, $5278.3K, also
achieves optimality. The relation between alternative selection
and the DM’s risk preference for facility expansion is similar to
that for facility development, and can be interpreted similarly.

Conclusive Remarks

This paper presents a new mythological approach for infrastruc-
ture development and expansion. This approach not only explic-
itly recognizes the uncertainty in the life cycle of infrastructure
facilities, but also incorporates it in a decision making model
reflecting the DM’s risk preference. Moreover, decision making in
the model achieves optimality for the DM’s risk preference. In
fact, infrastructure development and expansion are made conser-

Table 2. Standard Deviations �$103� of System Values of Design
Alternatives

Initial
number
of levels
n0

Initial foundation reserve �levels�, N−n0

0 1 2 3 4 5 6

1 0.7 64.1 440.3 735.4 913.3 998.8 1,042.1

2 64.1 440.3 735.4 913.3 998.8 1,042.1 1,061.3

3 440.3 735.4a 913.3 998.8 1,042.1 1,061.3 1,067.5

4 921.4 1,086.9 1,166.0 1,205.8 1,223.4 1,229.0 1,230.6

5 1,352.4 1,428.8 1,466.5 1,483.0 1,488.2 1,489.6 1,489.6

6 1,705.3 1,742.7 1,758.8 1,763.8 1,765.1 1,765.1 1,765.1

7 1,985.4 2,001.8 2,006.8 2,008.2 2,008.2 2,008.2 2,008.2
aOptimal alternative in term of certainty equivalent.

Table 3. Expected System Value �$103� of Design Alternatives

Initial
number
of levels
n0

Initial foundation reserve �levels�, N−n0

0 1 2 3 4 5 6

1 779.7 1,896.3 2,725.1 3,028.3 3,097.2 3,058.7 2,983.8

2 1,946.3 2,775.1 3,078.3 3,147.2 3,108.7 3,033.8 2,943.3

3 2,825.1 3,128.3a 3,197.2b 3,158.7 3,083.8 2,993.3 2,895.8

4 3,097.7 3,166.6 3,128.1 3,053.1 2,962.6 2,865.2 2,765.9

5 2,974.4 2,936.0 2,861.0 2,770.5 2,673.1 2,573.7 2,473.7

6 2,611.9 2,536.9 2,446.4 2,349.0 2,249.6 2,149.6 2,049.6

7 2,097.1 2,006.6 1,909.2 1,809.9 1,709.9 1,609.9 1,509.9
aOptimal alternative in term of certainty equivalent.
bOptimal alternative in term of expected system value.

Table 4. Relationship between Expected System Value and Risk
Preference

q
Optimal ESV

�$103�
Corresponding

�N ,v0�

0.1 3,146.6 �5,3�

0.2 3,197.2 �5,3�

0.3 3,218.3 �5,3�

0.4 3,235.1 �5,3�

0.5 3,245.8 �5,3�

0.6 3,244.5 �5,3�

0.7 3,216.4 �5,3�

0.8 3,181.5 �5,3�

0.9 3,117.6 �5,3�

Table 5. The Relationship between Certainty Equivalent and Risk
Preference

q
Optimal CE

�$103�
Corresponding

�N ,v0�
Corresponding ESV

�$103�

0.1 2,260.8 �3, 3� 2,825.1

0.2 2,509.4 �4, 3� 3,128.3

0.3 2,749.4 �4, 3� 3,134.3

0.4 2,992.4 �5, 3� 3,235.1

0.5 3,245.8 �5, 3� 3,245.8

0.6 3,521.7 �6, 3� 3,223.7

0.7 3,827.6 �6, 3� 3,198.7

0.8 4,198.8 �6, 4� 3,090.8

0.9 4,804.8 �6, 4� 2,911.7
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vatively to maintain the viability and achieve success, and this
paper provides a methodology to easily find the optimal alterna-
tive the DM desires.

Several refinements on the methodologies presented in this
paper are possible. Some of these are listed below:
1. Linking the risk-preference based optimization to the latent

performance evolution processes of infrastructure facilities
described in Ben-Akiva et al. �1993�, Jiang et al. �2000�, and
Smilowitz and Madanat �2000�. The infrastructure manage-
ment decisions, including maintenance, repair, and rehabili-
tation, will be made optimally under uncertainties, embedded
in both performance evolution and measurement, according
to the DM’s risk preference.

2. Applying the risk-preference based optimization to a deci-
sion making process embedded with multiple uncertainties
and real options, such as the highway development and man-
agement process described in Zhao et al. �2004�. To model
the uncertainties, multifactor lattice or Monte Carlo simula-
tion processes will need to be employed. Interested readers
may refer to Tseng and Lin �2004� for establishing a lattice
with more than one factor, and Zhao et al. �2004� for simu-
lating multiple uncertainties.
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Table 6. Alternatives for Expansion

u0=v1−v0

Optimal CE
�$103�

Corresponding
std. dev.

Corresponding ESV
�$103�

0 4,592.8 680.8 5165.8

1 4,659.4 735.4 5278.3

2 4,422.3 921.4 5197.7
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