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Abstract: Range estimating is a simple form of simulating a project estimate by breaking the project into work packages and approxi-
mating the variables in each package using statistical distributions. This paper explores an alternate approach to range estimating that is
grounded in fuzzy set theory. The approach addresses two shortcomings of Monte Carlo simulation. The first is related to the analytical
difficulty associated with fitting statistical distributions to subjective data, and the second relates to the required number of simulation runs
to establish a meaningful estimate of a given parameter at the end of the simulation. For applications in cost estimating, the paper
demonstrates that comparable results to Monte Carlo simulation can be achieved using the fuzzy set theory approach. It presents a
methodology for extracting fuzzy numbers from experts and processing the information in fuzzy range estimating analysis. It is of
relevance to industry and practitioners as it provides an approach to range estimating that more closely resembles the way in which experts
express themselves, making it practically easy to apply an approach.
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Introduction

Range estimating is one of the most commonly used forms of
Monte Carlo simulation in construction practice. This technique is
a simple form of simulating a project estimate by breaking the
project into work packages and approximating the variables in
each package using statistical distributions. During simulation,
these distributions are sampled, and a total project cost is aggre-
gated and statistically analyzed to derive proper cost indicators
with various probabilities of achieving them. Such an approach is
useful in quantifying uncertainties with high risk work packages,
thus leading to better decisions regarding the project budget.

This paper explores an alternate approach to range estimating
that is grounded in fuzzy set theory. The approach addresses two
shortcomings of Monte Carlo simulation. The first is related to the
analytical difficulty associated with fitting statistical distributions
to subjective data, and the second relates to the required number
of simulation runs to establish a meaningful estimate of a given
parameter at the end of the simulation.

Fuzzy set theory enables us to subjectively elicit information
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about parameters of interest in each work package from an esti-
mator without having to sacrifice accuracy, as such elicitation is a
cornerstone of fuzzy set theory �as opposed to approximating a
statistical distribution from subjective information�. Fuzzy set
theory requires only one pass of calculations to establish an esti-
mate of the parameter of concern, as opposed to the multiple runs
required in Monte Carlo simulation. This paper demonstrates that
comparable results to Monte Carlo simulation can be achieved
using the fuzzy set theory approach. In addition, it presents a
methodology for extracting fuzzy numbers from experts and pro-
cessing the information in fuzzy range estimating analysis.

Modeling Range Estimating Using Monte Carlo
Simulation

Ahuja et al. �1994� define range estimating as a simulation mod-
eling process performed after an estimate is made, e.g., an esti-
mate of duration or cost, to reflect the degree of uncertainty
associated with an estimate. Using cost range estimating as an
example, the process can be summarized as follows:
1. Identify the major work components in the form of major

cost packages and their related subcategories, which can be
restricted to the major items that affect the total cost bottom
line by a certain percentage;

2. Identify the uncertain items �e.g., cost items whose values
are not deterministic�;

3. Use statistical distributions �i.e., triangular and/or uniform
distributions� to model the variability of each uncertain item;

4. Use Monte Carlo simulation to provide the final outputs; and
5. Collect statistics on the mean, standard deviation, and

minimum/maximum values of the output.
The Monte Carlo simulation technique has been used to model

the risk analysis of cost and time in construction applications.
Using this technique, the modeled system takes inputs in the form
of random variables. The process continues by performing experi-
ments with many variations of the input and then collects sets of

outputs in the form of statistical distributions, which are analyzed
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to provide the measure of uncertainty and risk. The main steps
followed in Monte Carlo simulation are �Ahuja et al. 1994�:
1. Generate reproducible random numbers;
2. Generate random variates reflecting the true nature of the

modeled item �i.e., duration and cost estimate�. This step is
referred to as “input modeling,” which requires the modeled
item be modeled by an appropriate probabilistic distribution
that best represents the item;

3. Run the model and calculate the desired output parameters;
4. Repeat Steps 1 to 3 for a large number of iterations; and
5. Terminate after a specified number of iterations, and analyze

the collected output statistics.
Range estimating can be an effective tool for modeling the

uncertainty inherent in cost or duration estimates. However, this
technique is based entirely on probabilistic and statistical model-
ing techniques that model the randomness of the problem. In ad-
dition, the process requires a large number of iterations in order to
reach a reliable output. Selecting the appropriate statistical distri-
bution that best models the inputs is an important issue in random
modeling.

Modeling Uncertainty Using Fuzzy Numbers

Introduction to Fuzzy Numbers

Fuzzy set theory deals with a set of objects characterized by a
membership �characteristic� function that assigns to each object a
grade of membership ranging between zero �no membership� and
one �full membership� �Zadeh 1965�. The concept of “unsharp
boundaries” that fuzzy set theory represents mimics the human
way of thinking, which works with shades of gray rather than

Fig. 1. Figure 1 is a trapezoidal fuzzy number

Fig. 2. Comparison between
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black and white. A fuzzy number is a fuzzy membership function
that is both convex and normal. Fuzzy numbers are written in the
form of a domain value and its corresponding confidence level.
Fig. 1 shows an example of a trapezoidal convex and a normal
fuzzy number. A fuzzy number can be considered a generalization
of the concept of interval of confidence. Therefore, the math-
ematical operations of fuzzy numbers �i.e., addition, subtraction,
multiplication, and division� can be processed using the concepts
of the interval of confidence.

Fuzzy Numbers versus Probability Distributions

Fuzziness and probability represent different aspects of uncer-
tainty. According to Kaufmann and Gupta �1985�, a fuzzy number
is not a random variable. The random variable is defined in terms
of the theory of probability, whereas a fuzzy number is a subjec-
tive datum that is defined by the theory of fuzzy sets. In order to
show the difference between the two types of uncertainty, the
summation operation is taken as an example. Fig. 2 shows that
the distribution of summation of probability distributions will
eventually achieve a Gaussian shape �normal� that obeys the
Laplace-Gauss central limit theorem. On the other hand, the
addition of two fuzzy numbers that are similar in shape will result
in a larger fuzzy number that maintains the same shape. This
example shows how the two approaches differ in the way they
process uncertainty.

According to Ferson �2002�, some of the disadvantages of
Monte Carlo methods are computational burden, sensitivity to
uncertainty about input distribution shapes, and the need to as-
sume correlations among all inputs. On the other hand, modeling
uncertainty using fuzzy arithmetic is computationally simple, not
very sensitive to moderate changes in the shapes of input distri-
butions, and does not require the analyst to assume particular
correlations among inputs. However, the results generated by
fuzzy arithmetic are conservative and may overestimate uncer-
tainty. As illustrated in Fig. 2, the summation operation of two
fuzzy numbers generated an output that is wider in range.

Fuzzy set theory can be used as an effective alternative to the
random modeling of uncertainty. It is a very attractive alternative
because it is more capable of extracting and representing the re-
quired information from experts by effectively capturing their lin-
guistic and subjective evaluations. In addition, the calculations
involved are much easier and faster compared to the probabilistic
approach.

In order to minimize the effect of overestimation in fuzzy

bility and fuzzy convolution
proba
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modeling, this paper will introduce concepts that must be consid-
ered when modeling uncertainty using fuzzy arithmetic. The fol-
lowing sections present some of the concepts that need to be
incorporated and how they will be used to model uncertainty in
cost range estimating.

Crisp Representation of a Fuzzy Number

A fuzzy number can be defined by a crisp quantity that represents
the “defuzzified” or “expected” value of the fuzzy number. As
indicated earlier, fuzzy numbers are a generalization of the con-
cept of the interval of confidence. As we are dealing with a num-
ber represented by an interval, ranking this number is not a
straightforward process. Therefore, calculating the “expected
value” of the fuzzy number will render the fuzzy number ranking
and comparison much easier. Different methodologies have been
developed to capture an expected value of a fuzzy number.

One of the most common defuzzification methods is the Cen-
ter of area �COA�, which is calculated as

y* =
� x�i�xi�

� �i�xi�

�1�

where y*=defuzzified value; �i�x�=aggregated membership func-
tion; and x=output variable. Eq. �1� represents the centroid of the
fuzzy number.

In probability theory, the mean value and variance correspond,
respectively, to the centroidal distance and central moment of
inertia of an area �Ang and Tang 1975�. The centroidal distance
�x0� of a unit area is calculated by

x0 =

�
−�

�

xf�x�dx

area
=�

−�

�

xf�x�dx �2�

Eq. �2� is also the first moment �about 0� of the irregular-shaped
area. The moment of inertia about the vertical centroidal axis �Iy�
is
18
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Iy =�
−�

�

�x − x0�2f�x�dx �3�

In probability, the mean value of a continuous random variable X
with a probability density function fX�x� is

E�X� =�
−�

�

xfX�x�dx �4�

The variance of a continuous random variable X with a probabil-
ity density function fX�x� is:

Var�X� =�
−�

�

�x − �X�2fX�x�dx �5�

Comparing Eqs. �2� and �3� with �4� and �5�, respectively, the
mean value is equivalent to the centroidal distance, and the vari-
ance is equivalent to the centroidal moment of inertia of an area
�Ang and Tang 1975�.

Therefore, as the probabilistic mean value is equivalent to the
centroidal distance of an area, the COA defuzzification method of
any fuzzy number will generate a defuzzified value that is iden-
tical to the probabilistic mean of the normalized fuzzy number.
Therefore, when a fuzzy number maintains the same range and
the same shape of a bounded or a truncated probabilistic distribu-
tion, the defuzzified value of the fuzzy number using COA
method will be equivalent to the mean value of the probabilistic
distribution. The equations for calculating the expected values
�EV� using the COA method of common fuzzy numbers used in
this study are as follows �the fuzzy numbers are represented by a
four element notation �a ,b ,c ,d� as shown in Fig. 1�:
• Uniform fuzzy numbers �a ,a ,b ,b�

EVUniform =
a + b

2
�6�

• Triangular fuzzy numbers �a ,b ,b ,c�

EVTriangular =
a + b + c

3
�7�

• Trapezoidal fuzzy numbers �a ,b ,c ,d�
EVTrapezoidal = a +
2�c − b��b − a� + �c − b�2 + �b − a��d − a� + �c − b��d − a� + �d − a�2

3�c − b + d − a�
�8�
Eqs. �6�–�8� calculate the expected values of the uniform, trian-
gular, and trapezoidal fuzzy numbers, respectively, which are
equivalent to the mean values of uniform, triangular, and trap-
ezoidal probability distributions, respectively.

The variances of the common fuzzy numbers used in the study
can be calculated using the probabilistic definition of variance as
follows:
• Uniform fuzzy numbers �a ,a ,b ,b�

VarianceUniform =
�b − a�2

12
�9�

• Triangular fuzzy numbers �a ,b ,b ,c�

VarianceTriangular =
a2 + b2 + c2 − ab − ac − bc

�10�
• Trapezoidal fuzzy numbers �a ,b ,c ,d�, according to van Dorp
and Kortz �2003�

VarianceTrapezoidal =
�b − a�

�d + c − b − a��1

6
�a + b�2 +

1

3
b2�

+
1

�d + c − b − a��2

3
�c3 − b3��

+
�d − c�

�d + c − b − a��1

3
c2 +

1

6
�c + d�2�

− �EV trapez�2 �11�

Eqs. �9�–�11� calculate the variances of the uniform, triangular,

and trapezoidal fuzzy numbers, respectively, which are equivalent
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to the variance values of uniform, triangular, and trapezoidal
probability distributions, respectively.

Therefore, when a fuzzy number maintains the same range and
the same shape of a bounded or a truncated probabilistic distribu-
tion, the variance of the fuzzy value will be equal to the variance
of the related probability distribution.

Summation of Fuzzy Numbers

As indicated earlier, fuzzy numbers are considered a generaliza-
tion of intervals, and the mathematical operations on fuzzy num-
bers �i.e., summation� can be processed using the concepts of the
interval of confidence. Therefore, the methodology adopted for
the summation of fuzzy numbers is the �-cut method and interval
analysis. �-cut ��� �0,1�� is a discretization technique applied
on the continuous membership function to generate a discrete set
of variables in the form of intervals �a ,b�. The �-cut technique is
based on the “extension principle” which implies that algebraic
operations on real numbers can be extended to fuzzy numbers
�Zadeh 1965�. Interval arithmetic is used to analyze the generated
intervals. The �-cut method can be used on different types and
shapes of fuzzy numbers. The calculation process using �-cut
method is carried out through the following steps:
1. Select a particular �-cut value �0���1�;
2. Find the corresponding intervals of the selected �-cuts;
3. Use the interval operations to calculate the summation; and
4. Repeat the steps for as many �-cuts as needed.

The types of fuzzy numbers used in this study �uniform,
triangular, and trapezoidal� can be considered special cases
of the trapezoidal shape. Therefore, they can be represented by
four variables; trapezoidal= �a ,b ,c ,d�, uniform= �a ,a ,b ,b�, and
triangular= �a ,b ,b ,d�. The summation of these numbers can be
performed by adding the bases and peaks of the numbers �∑ first
variables, ∑ second variables, ∑ third variables, and ∑ fourth
variables�.

Fuzzy Summation and Probabilistic Central Limit
Theorem

According to the central limit theorem, the sum of independent
random variables tends to the normal distribution as the number
of random variables, regardless of their distributions, increases
without limit �Ang and Tang 1975�. Therefore, to prove that using
fuzzy numbers in range estimating can yield comparable results to
the probabilistic approach, we need to prove that the defuzzified
expected value of the fuzzy output using COA is comparable to
the mean of the probabilistic output. The probabilistic output is
represented by a Gaussian distribution based on the central limit
theorem. In addition, we need to prove that the summation of
variances of fuzzy inputs is comparable to the summation of vari-
ances of probabilistic distributions.

Boswell and Taylor �1987� investigated the concept of the
fuzzy random variable, which is a fuzzy set consisting of a mem-
bership function and a basic set whose components are an ordi-
nary mapping �real random variables� from a probability space. In
addition, the random variables exhibit an infinite number of dis-
tributional types whose summation or average is a fuzzy random
variable with a membership function of its own and a basic set of
random variables. The conclusion of their study is that the sum-
mation of independent fuzzy random variables converges, in the

limit, to a fuzzy Gaussian random variable, providing a fuzzy
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equivalence of the central limit theorem of classical probability
theory.

Boswell and Taylor’s study �1987� provided a mathematical
proof of the similarity between the summation of fuzzy random
variables and the central limit theorem of classical probabilistic
summation. In this study, we are only dealing with fuzzy num-
bers, which are not random. Therefore, the analysis is much easier
and it is considered a special case of the summation of fuzzy
random variables.

In addition to the mathematical proof provided by Boswell and
Taylor �1987�, an experiment was conducted using Microsoft
EXCEL and the @RISK �Palisade, NY� add-in, in order to show
how the summation of fuzzy numbers behaves as compared to the
probabilistic range estimating approach. The experiment is de-
signed to compare the outputs of the summation of fuzzy inputs
and probabilistic distributions. The experiment is designed using
the following assumptions:
1. The two approaches will share the same boundaries. The

boundaries are randomly created between the following
ranges:

• Minimum range �MINrange�=Random �0–1,000�; and
• Maximum range �MAXrange�=Random ��Min+100� to

�Min+1,000��.
2. Fuzzy numbers used are:

• Uniform �a ,b�: a= �MINrange� and b= �MAXrange�;
• Triangular: �a ,b ,c�: a= �MINrange�, c= �MAXrange�, and b is

randomly created between �a� and �c�; and
• Trapezoidal �a ,b ,c ,d�: a= �MINrange�, d= �MAXrange�, and

b and c are randomly created between �MINrange� and
�MAXrange�, provided that b�c.

3. Probability distributions used are:
• Uniform �min, max�: min�continuous boundary

parameter���MINrange� and max�continuous boundary
parameter���MAXrange�.

• Triangle �min, most likely, max�: min�continuous
boundary�� parameter�MINrange�, max�continuous bound-
ary parameter���MAXrange�, most likely �continuous mode
parameter� is randomly created between �MINrange� and
�MAXrange�.

• PERT �min, most likely, max�, which is an approximation
of the Beta distribution: min�continuous boundary
parameter���MINrange�, max�continuous boundary
parameter���MAXrange�, most likely �continuous param-
eter� is randomly created between �MINrange� and
�MAXrange�.

• Generalized beta ��1 ,�2 ,min,max�: min�continuous
boundary parameter���MINrange�, max�continuous bound-
ary parameter���MAXrange�, and �1 �continuous shape pa-
rameter� and �2 �continuous shape parameter� are both ran-
domly created between 2 and 25. The range of the shape
parameters is selected between 2 and 25 to restrict the
shape of the beta distributions to unimodal distributions. In
order to deal with bimodal beta distribution, the distribution
must be divided into two distributions �each with one local
maximum�. Two fuzzy numbers are created in order to
match the parameters of the divided distributions.
The scope of this experiment only covers the unimodal
distributions.

• Normal truncated �� ,��: The distribution is truncated be-
tween �MINrange� and �MAXrange�, � �mean� is randomly
created between �MINrange� and �MAXrange�, and � �stan-
dard deviation� is randomly created between �MINrange� and

�MAXrange�.
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• Exponential truncated ���: the distribution is truncated be-
tween �MINrange� and �MAXrange�, � �continuous scale pa-
rameter� is randomly created between �MINrange� and
�MAXrange�.

• Lognormal truncated �� ,��: the distribution is truncated
between �MINrange� and �MAXrange�, � �mean� is randomly
created between �MINrange� and �MAXrange�, and � �stan-
dard deviation� is randomly created between �MINrange� and
�MAXrange�.
4. 1,000 randomly selected combinations of fuzzy numbers and

is difficulty in making a specific selection or decision between
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related probabilistic distributions are generated.
5. 6 inputs are used in each of the 1,000 combinations.
6. The probabilistic summations of each combination are per-

formed using a Monte Carlo simulation that has the follow-
ing assumptions:

• Total number of iterations=1,000 and
• Random generator seed=1.

7. The goal of the experiment is to calculate the absolute error
between the expected values and variances of the outputs, as

follows:
Absolute error �of expected values EV� = 100��EVfuzzy − EVprobabilistic��/EVprobabilistic �12�

Absolute error �of standard deviation� = 100��	
 fuzzyVariances − 	
 probabilisticVariances�� �	
 probabilisticVariances

�13�
8. Statistics collected for the absolute errors are:
• Mean absolute error for all 1,000 combinations; and
• Standard deviation of absolute error for all 1,000

combinations.
The results of the experiment were as follows:

1. After running the experiment for 1,000 iterations:
• The mean absolute error of the “expected values” compari-

son is 5.2% with a standard deviation of 4%; and
• The mean absolute error of the “standard deviation” com-

parison is 13.5% with a standard deviation of 11.6%.
2. When the beta distribution is not included in the analysis, the

results after 1,000 iterations are improved:
• The mean absolute error of the expected values comparison

is 5.0% with standard deviation of 3.8%; and
• The mean absolute error of the standard deviation compari-

son is 9.6% with a standard deviation of 6.9%.
From the results generated the following conclusions were

made:
• The fuzzy approach generated very comparable results to the

probabilistic approach. This was proven experimentally when
bounded and truncated probability distributions were used in
the analysis.

• When the beta distribution was removed from the experiment,
better results were obtained, which indicates that the beta dis-
tribution in general requires some parameter control to obtain
better results.

Fuzziness and Ambiguity Measures

When experts use fuzzy numbers in modeling uncertainty, it is
very important to have some measures to assess uncertainty and
evaluate how vague or precise the experts’ estimates are. There
are different definitions and terms that describe “uncertainty.” Un-
certainty definitions can be categorized into two terms: vagueness
and ambiguity. According to Klir and Folger �1988�, vagueness is
related to the difficulty of providing a sharp and precise distinc-
tion of a specific incident or phenomenon due to its vagueness. As
for the term “ambiguity,” it describes the situation in which there
alternatives due to their ambiguity. In fuzzy set theory, the con-
cept of “fuzziness measure” deals with the first type of uncer-
tainty �vagueness�. The fuzziness measure is related to the de-
grees to which an arbitrary element of the universal set �X�
belongs to the individual crisp subsets of X �Klir and Folger
1988�. The other measure, the “ambiguity measure,” deals with
the lack of precision in determining the exact value of a magni-
tude �Delgado et al. 1998b�.

The fuzziness measure adopted in this paper is the one devel-
oped by Klir and Folger �1988�. Their approach defines the fuzzi-
ness of a set in terms of the lack of distinction between the set and
its complement. In other words, the more a set is different from its
complement, the fuzzier it is. In order to calculate the fuzziness
measure using this approach, a fuzzy complement approach and a
distance function �e.g., Hamming distance� are utilized. For a
given fuzzy set A�x�, the measure of fuzziness, F�A�, is obtained
using the following equation:

F�A� = 

x�X

�1 − �2A�x� − 1�� �14�

Eq. �14� is only applicable to finite fuzzy sets, but it can be
modified to fuzzy sets defined on infinite but bounded subsets.
For example, when X= �a ,b�, the measure of fuzziness is then
obtained by

F�A� =�
a

b

�1 − �2A�x� − 1��dx = b − a −�
a

b

�2A�x� − 1�dx

�15�

The fuzziness of a crisp number or a fuzzy uniform number is
zero because the lack of distinction between a fuzzy uniform
number or a crisp number and their complements is zero. As for
the ambiguity measure, the approach developed by Delgado et al.
�1998a� is selected as the ambiguity measure used in this paper.
According to Delgado et al. �1998a�, ambiguity �AG� is obtained

by the following formula:
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AG��� =�
0

1

r�R�r� − L�r��dr �16�

where ���=fuzzy number with r-cut representation �L�r� ,R�r��.
The term �R�r�=L�r���length of the r-cut interval �L�r� ,R�r��.
Therefore, AG��� can be considered as a “global spread” of the
fuzzy number. The ambiguity AG��� can be calculated for some
of the most common fuzzy numbers as follows:
1. For a trapezoidal fuzzy number �a1 ,a2 ,a3 ,a4�

AG���Trapezoidal = �a3 − a2�/2 + ��a4 − a3� + �a2 − a1��/6

�17�

2. For a triangular fuzzy number �a1 ,a2 ,a3��

AG���Triangular = ��a3 − a2� + �a2 − a1��/6 �18�

3. For a uniform fuzzy number �a1 ,a2�

AG���Uniform = �a2 − a1�/2 �19�

4. For a crisp number �a1�

AG���Crisp = 0 �20�

To clarify the difference between the fuzziness and ambiguity
measures, Fig. 3 provides a comparative illustration of the two
measures for three types of fuzzy numbers �uniform, triangular,
and trapezoidal�.

For comparative purposes, the three fuzzy numbers are defined
on the same range. Fig. 3 shows that the uniform fuzzy number
has the least fuzziness measure, and the triangular fuzzy number
has the highest fuzziness measure, because the degree of belong-
ing of the first is well defined �in terms of intervals� while the
latter has a “fuzzily” defined degree of belonging depicted by the
sloped lines that form the triangle. As for the trapezoidal fuzzy

Fig. 3. Fuzziness and ambiguity measures definition

Table 1. Comparison of Fuzziness Measure, Ambiguity Measure, and Fu

Type of
fuzzy
number

Fuzzy parameters

a b c

Trapezoidal 2.0 7.0 10.0

Trapezoidal 3.0 7.0 9.0

Trapezoidal 10.0 10.0 15.0

Triangular 12.0 16.0 16.0

Triangular 7.0 12.0 12.0

Triangular 7.0 8.0 8.0

Uniform 6.0 6.0 30.0

Uniform 2.0 2.0 7.0

Uniform 6.0 6.0 7.0
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number, although it has sloped lines similar to those of the trian-
gular fuzzy number, it is less fuzzy than the triangular fuzzy
number because it contains a defined “flat or uniform range.” This
unique shape of the trapezoidal fuzzy number renders its fuzzi-
ness somewhere between that of the uniform fuzzy number and
the triangular fuzzy number.

As for the ambiguity measure, Fig. 3 shows that the triangular
fuzzy number has the least ambiguity, and that the uniform fuzzy
number is most ambiguous. A crisp number has zero fuzziness
and zero ambiguity. Taking a crisp number as the reference, it is
noted that when the overall spread of any fuzzy number around
this crisp number is minimized, the ambiguity is decreased. This
explains why the uniform fuzzy number would certainly have the
highest measure of ambiguity, and the triangular fuzzy number
would have the least. Again, the trapezoidal fuzzy number falls in
between the two extremes, simply because it possesses, to some
extent, the characteristics of both of the other two fuzzy numbers.

In order to provide a measure that combines the effect of both
the fuzziness and ambiguity measures, a “fuzzy number quality
index” �FNQI� is calculated using the weighted average of both
measures. For a fuzzy set A, the fuzzy quality index is defined
measured as:

FNQI = �WFF�A� + WAGAG�A��/�WF + WAG� �21�

where WF and WAG=weights of the fuzziness measure and ambi-
guity measure respectively and F�A� and AG�A� are the fuzziness
and ambiguity measures of fuzzy number �A�, respectively. In this
paper, equal weights are assumed for both measures. As there is
no reference index against which the fuzzy quality measure can
be compared, an acceptance level can be set by the user to reject
the estimates with clearly high �FNQI� compared to the others.
Table 1 shows the evaluation process of the different measures.

As shown in Table 1, depending only on the fuzziness measure
to assess the “quality” of the estimates is not usually sufficient.
Although some fuzzy numbers have low measures of fuzziness,
they still lack the necessary precision in determining the exact
value, which renders them “ambiguous.” A good example of this
is uniform fuzzy numbers �sometimes referred to as crisp inter-
vals�. Although they will always have a zero measure of fuzzi-
ness, they have high measures of ambiguity. Therefore, it is
important to assess the quality of the estimates using two mea-
sures �fuzziness and ambiguity�.

uality Index

Fuzziness
measure

Ambiguity
measure

Fuzzy
quality
indexd

0.0 7.5 4.0 5.8

5.0 5.0 2.7 3.9

8.0 1.5 3.0 2.3

5.0 6.5 2.2 4.4

2.0 2.5 0.8 1.7

0.0 1.5 0.5 1.0

0.0 0.0 12.0 6.0

7.0 0.0 2.5 1.3

7.0 0.0 0.5 0.3
zzy Q

2

1

1

2

1

1

3
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Proposed Fuzzy Range Estimating Model

In this section, a detailed description of the model developed for
fuzzy range estimating is provided. The model utilizes the differ-
ent concepts discussed in the previous sections. Fig. 4 shows a
flowchart of the proposed model for modeling uncertainty in cost
range estimating using fuzzy arithmetic.

The following steps are required in the proposed model:
1. By consulting the experts involved in the process, the prob-

lem under investigation is identified. In the case of uncer-
tainty in cost estimates, the major cost packages and their

Fig. 4. Proposed methodology flowchart
subgroups have to be clearly identified by the experts.
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2. Each expert is then required to give his/her best estimate
based on his/her experience choosing from the different input
formats �triangular, trapezoidal, uniform, singleton�. The
logical meaning of these input formats is explained as
follows:

• Triangular fuzzy numbers: Chosen when the expert be-
lieves that the estimate of the item has a “most likely” or
“most plausible” point that is between a maximum and a
minimum boundary.

• Trapezoidal fuzzy number: Chosen when the expert be-
lieves that the estimate has a most plausible range or inter-
val that lies between a maximum and a minimum boundary.

• Uniform fuzzy numbers �sometimes referred to as a “crisp
interval”�: Chosen when the expert believes that the esti-
mate should take the form of an interval that has a maxi-
mum and a minimum point, and when he/she finds it diffi-
cult to assign a most plausible estimate to a point or a
range.

• Crisp number �singleton�: Chosen when the expert is 100%
confident or certain that the estimate is a deterministic one
that has zero uncertainty.

3. The next step is to consolidate the experts’ inputs. The con-
solidation process can be done using three different ap-
proaches as follows:

• Consensus: The final estimates are made by consensus be-
tween the experts. This approach usually involves round-
table discussions between the experts participating in the
estimation process. Generally, the greater the number of
experts involved in the process, the more time required to
reach a consensus. This approach can be used in the esti-
mation process within the same company or entity.

• Fuzzy Delphi approach: The Delphi method is a systemic
approach used for long range forecasting in which the es-
timates of experts are made to converge using statistical
analysis �Kaufmann and Gupta 1988�. It is conducted by
interviewing highly qualified experts to obtain their opin-
ions regarding specific issues, such as cost and time esti-
mates. Since it is difficult in most cases to provide precise
and crisp estimates of cost or time, a fuzzy representation
of the process can model this uncertainty. The fuzzy Delphi
method can be an effective method for extracting subjective
information from experts. According to Kaufmann and
Gupta �1988�, the fuzzy Delphi method consists of the fol-
lowing steps:

1.
n number of experts are asked to provide three estimates

of a specific value �e.g., estimating activity duration� by de-
termining the minimum, the most plausible, and the maxi-
mum estimate. The estimates are presented in the form of
triangular fuzzy numbers

Ai = �ai,bi,ci� �22�

where A=triangular fuzzy number; a, b, and c�first, second,
and third elements of the fuzzy number, respectively; and
i� ith expert �i=1,2 , . . .n�.

2. The estimates are averaged. For each expert, the deviation
from the average is calculated as follows:

Favg�aavg,bavg,cavg� = �1

n

n

ai,
1

n

n

bi,
1

n

n

ci� �23�

i=1 i=1 i=1
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Favg − Ai = �1

n

i=1

n

ai − ai,
1

n

i=1

n

bi − bi,
1

n

i=1

n

ci − ci�
�24�

where Favg=fuzzy average; and aavg, bavg, and cavg=first,
second, and third elements of the fuzzy number,
respectively.

3. The deviations in the estimates are sent back to the ex-
perts for revision. Each expert provides a new triangular
fuzzy number. Steps 1–3 are repeated until two successive
averages become reasonably close based on the decision
maker’s stopping criterion. The way the technique is de-
veloped restricts the input option to one input type �trian-
gular fuzzy number�, which limits the expert’s freedom in
providing his or her estimate in different formats �i.e.,
trapezoidal fuzzy number�. Therefore, in this paper, a
modified fuzzy Delphi method is presented where experts
are given the choice of representing their estimate in ei-
ther uniform, triangular, or trapezoidal fuzzy numbers.
The proposed fuzzy Delphi method has the same steps
explained before. For easier fuzzy arithmetic processing,
uniform and triangular fuzzy numbers can be represented
by the trapezoidal four-element format because they are
considered particular cases of the trapezoidal fuzzy num-
ber, as follows:

• Trapezoidal fuzzy number= �a ,b ,c ,d�;
• Triangular fuzzy number= �a ,b ,c� can be represented as

�a ,b ,b ,c�;
• Uniform fuzzy number= �a ,b ,c� can be represented as

�a ,a ,b ,b�; and
• Crisp number= �a� can be represented as �a ,a ,a ,a�.

The general presentation of the four-element fuzzy num-
ber is A= �e1 ,e2 ,e3 ,e4�, where e1, e2, e3, and e4=first, sec-
ond, third, and fourth elements of the fuzzy numbers,
respectively.

The average fuzzy number Favg is calculated as follows:

Favg = �1

n

i=1

n

e1
i ,

1

n

i=1

n

e2
i ,

1

n

i=1

n

e3
i ,

1

n

i=1

n

e4
i� �25�

The deviation from the average is calculated as follows:

Favg − Ai = �1

n

i=1

n

e1
i − e1

i ,
1

n

i=1

n

e2
i − e2

i ,
1

n

i=1

n

e3
i

− e3
i ,

1

n

i=1

n

e4
i − e4

i� �26�

The expected value of the average can be calculated using
Eq. �8�.

4. The process proposed in this paper is a structured process for
extracting information from the experts in the form of fuzzy
numbers. Depending on the application, the process can
work for both cost and activity duration evaluation. The cost
range estimating application is presented in this paper. In
cost range estimating, the next step in the process after ex-
tracting the necessary information from the experts is to cal-
culate the total estimated cost of the problem under consid-
eration, which is performed using simple summation. The
operation starts by adding up the cost of the subitems for
each work package. The final total cost estimate is then ob-

tained by adding up the costs of the work packages. The final
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evaluation, representing the total estimated cost of the mod-
eled packages, is in the form of a fuzzy number. The follow-
ing information will be calculated for the final fuzzy output:

• Expected mean value of the output calculated using one of
the equations from Eqs. �6�–�8�;

• Standard deviation calculated using one of the equations
from Eqs. �9�–�11�;

• Fuzziness measure using Eq. �15�;
• Ambiguity measure using one of the equations from Eqs.

�17�–�20�; and
• FNQI using Eq. �21�.

This information is important in assessing the precision
and quality of the output when compared to other outputs
obtained from different estimating techniques. The following
section provides an illustrative example comparing the pro-
posed fuzzy range estimating process to the probabilistic
range estimating technique.

Illustrative Example Comparing Fuzzy
and Probabilistic Approaches

To illustrate the proposed approach, a case study of a tunneling
project using a tunnel boring machine is used. The North of Ed-
monton Sanitary Trunk �NEST� project, conducted by the City of
Edmonton had a maximum budgeted cost of $8.8 million and a
preliminary estimated cost of $6 million. The City of Edmonton
had concerns regarding the budget and wanted to know the
chances of exceeding the preliminary estimated cost and being
within the total budgeted cost. The main cost packages and their
subcategories are shown in Table 2.

A Monte Carlo simulation study was conducted to estimate the
chances of meeting the budgeted cost �AbouRizk et al. 2006�. In
the study, the writers used Simphony’s �University of Alberta,
Alberta� range estimating template to do the analysis. Simphony
is a specialized simulation tool that supports the Monte Carlo
simulation technique in discrete event simulation and range esti-
mating �AbouRizk and Mohamed 2000�. The model inputs are
listed in Table 2.

After 500 iterations, the following statistics were collected
using the Monte Carlo simulation model:
• Low estimated cost: $5,486,345;
• High estimated cost: $6,840,657;
• Mean estimated cost: $6,059,263;
• Standard deviation: $280,249.7; and
• 80th percentile: $6,300,000.

In this example, only the comparison between the final outputs
of the probabilistic and fuzzy approach is performed. Therefore,
for the fuzzy range estimating approach, the inputs represented by
the fuzzy numbers are given by the same shape of probability
distributions used �i.e., a triangular fuzzy number is used when a
probabilistic triangular distribution is used�. The fuzzy output was
generated after one iteration only by summing up all the fuzzy
inputs involved in the analysis. The fuzzy output is a trapezoidal
fuzzy number that has the following characteristics:

Fuzzy trapezoidal number parameters: a1=$5,038,248.8,
a2=$5,697,250.2, a3=$5,732,250.2, and a4=$7,417,863.4;
• Expected mean value: $6,054,474 �using Eq. �8��;
• Standard deviation: $501,046.33 �using Eq. �11��;
• Fuzziness measure: 1,172,307.1 �11.7 scaled� �using Eq. �15��;
• Ambiguity measure: 408,269.1 �4.08 scaled� �using Eq. �17��;

and

• FNQI: 7.89 �scaled� �using Eq. �21��.
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The fuzzy output is shown in Fig. 5. The fuzziness, ambiguity,
and FNQI measures were scaled �divided by 100,000� in order to
make the comparison more readable and easier to grasp. The
quality measures �fuzziness, ambiguity, and FNQI� provide more
meaningful information when used as relative comparative indi-
ces, and can not be used to assess the quality of the fuzzy output
unless more alternatives exist. Therefore, when more than one run
is done and, hence, more than one fuzzy output is obtained, the
fuzziness and ambiguity measure can be used to assess the quality
of these outputs and check which one has the least FNQI.

When comparing the outputs of both the probabilistic and
fuzzy input approaches the following observations are made:
• The difference between the probabilistic mean and the fuzzy

expected value is 0.07% �the fuzzy output is less by 0.07%�.

Table 2. Data for the NEST Case Study Project

Item Description

1 Main work shaft
1.1.1 Mobilization—move in

1.1.2 Power installation

1.1.3 Power-156 Str.

1.2 Excavate work shaft

1.3 Excavate undercut

1.4 Excavate tail tunnel to east

1.5 Form and pour undercut

1.6 Form and pour tail undercut

1.7 Form and pour shaft

2 Access manhole
2.1 Excavate access shaft

2.2 Backfill shaft and install AMH

3 Tunneling (866 m)
3.1 Tunnel and install segments—866 m price per m

3.2 Patch and rub tunnel crown

3.3 Patch and rub tunnel-final cleanup

3.4 Spoil removal

4 Access manhole shaft
5 Tunneling (756 m)
5.1 Tunnel and install segments—756 m price per m

5.2 Patch and rub tunnel crown

5.3 Patch and rub tunnel-final cleanup

5.4 Spoil removal

6 Removal shaft

Fig. 5. Fuzzy output
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• A unique concept in fuzzy set theory is the law of possibility
or possibility measure �Kaufmann and Gupta 1985�. Using the
possibility measure, one can determine which value is more
plausible or possible. This type of information that fuzzy set
theory provides is unique; probability theory does not support
this concept, because the probability for a specific random
variable to take place is close to zero �Lorterapong and
Moselhi 1996�. Therefore, it is easy to determine which spe-
cific variable is more possible and plausible using this mea-
sure. For example, the possibility measure for the $6 million
project estimated cost equals 0.84 which means that the
project cost can reach $6 million with a 0.84 possibility as
shown in Fig. 5. In addition, the most possible and plausible
variable in a normal fuzzy number is the one that has a possi-
bility measure of 1.0. Therefore, the most possible and plau-
sible output is �$5,697,250, $5,732,250�.

Conclusions and Recommendations

In this paper, modeling uncertainty using fuzzy set theory was
shown to be as effective as the probabilistic approach. Fuzzy set
theory has the advantage of providing easier and faster to obtain
outputs. An effective approach for extracting subjective informa-
tion from experts was presented. Using the approach, experts are
free to express their knowledge in different formats, e.g., triangu-
lar or trapezoidal fuzzy numbers, which suits the way in which
they think and better captures their subjective assessments.

Modeling range estimating using fuzzy arithmetic yields very

Optimistic
$

Most likely
$

Pessimistic
$

40,000 70,000 100,000

89,000

15,000 50,000

97,600 122,000 146,400

200,000 269,000 350,000

100,000 123,000 150,000

80,000

39,000

100,000 120,000 150,000

16,000

44,000

2,254 2,474 3,360

80 134 140

161 188 215

5.4 8.1 9.7

61,000

2,254 2,474 3,360

80 134 140

161 188 215

5.4 8.1 9.7

101,000
comparable outputs when compared to the probabilistic approach.
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The fuzzy approach has the advantage of being faster and easier
to process because it only takes one iteration to generate the out-
put, while it takes Monte Carlo simulation a number of iterations
to generate a reasonable and reliable output. The final fuzzy out-
put is assessed by quality measures that can be used to compare
the fuzziness, ambiguity, and the combined effect of both of the
output. These quality measures can be used to compare multiple
final estimates by showing how vague or precise the experts were
in providing their estimates.

Further, the possibility measure in fuzzy set theory is consid-
ered a unique concept that evaluates the plausibility for a specific
variable within the fuzzy number to take place. Probability theory
does not support a similar measure. The focus of this study is
modeling cost range estimating using fuzzy set theory. Fuzzy
range estimating in scheduling can also be investigated. The same
methodology developed for the fuzzy cost range estimating prob-
lem can be utilized in fuzzy scheduling range estimating.
However, different fuzzy arithmetic operations were utilized to
calculate the forward and backward pass calculations and critical-
ity measurements. This paper has laid the foundation for future
research on incorporating fuzzy numbers in range estimating
applications.

Notation

The following symbols are used in this paper:
A�x� � fuzzy number A of a variable x;

AG�A� � ambiguity measure of fuzzy number �A�;
E�X� � mean value of a continuous random variable

X;
e1 � first element of a fuzzy number;
e2 � second element of a fuzzy number;
e3 � third element of a fuzzy number;
e4 � fourth element of a fuzzy number;

F�A� � fuzziness measure of fuzzy number �A�;
Favg � average fuzzy number;

fX�x� � probability density function;
Iy � moment of inertia about the vertical centroidal

axis;
max � maximum;

MAXrange � maximum range;

min � minimum;

334 / JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT
MINrange � minimum range;
Var�X� � variance of a continuous random variable X;

WAG � weight of ambiguity measure;
WF � weight of fuzziness measure;
x0 � centroidal distance of a unit area;
y* � defuzzified value of fuzzy number;

��x� � membership function of variable x; and
�i�x� � aggregated membership function of output

variable �x�.
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