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Abstract: Decision trees �DTs� have proven to be valuable tools for decision making. The common approach for using DTs is calculating
the expected value �EV� based on single-number estimates, but the single-number EV method has limited the DTs’ real-life applications
to a narrow scope of decision problems. This paper introduces the stochastic multilevel decision tree �MLDT� modeling approach, which
is useful for analyzing decision problems characterized by uncertainty and complexity. The MLDT’s advantages are shown through a
computer simulation program: the Decision Support Simulation System �DSSS�. The DSSS allows users to model probabilistic linear
graph networks and provides a hierarchical modeling method for modeling decision trees to present uncertainties more accurately. It
consists of three modules: tree analysis networks �TANs�, the shortest and longest path dynamic programming analysis network, and cost
time analysis networks. The paper only discusses the TAN module by presenting the MLDT concept under the TAN of the DSSS computer
application. The content of the paper includes the modeling approach, its advantages, and examples that can be used in modeling
stochastic trees. The DT-DSSS was verified by conducting several tests and validated by using it extensively for undergraduate courses in
civil engineering at the University of Calgary for the last two academic years.
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Introduction

This paper introduces the multilevel network as a modeling
method for analyzing decision problems by demonstrating the
application of the multilevel networks in modeling decision tree
�DT� problems. First, background information on the decision
tree concept is provided, the expected value �EV� approach of
decision trees is explained, and the disadvantages of the EV ap-
proach are presented. Background on stochastic decision trees is
also provided, with a brief description of the limitations and chal-
lenges associated with stochastic decision trees.

Next, the multilevel decision tree �MLDT� is introduced by
explaining the modeling specification requirements of the MLDT
as the basis for development of a computer simulation applica-
tion: the Decision Support Simulation System �DSSS�. The
process of modeling a decision problem and the calculation pro-
cedure using the MLDT are also explained, with an example that
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illustrates the DSSS’s outputs. Finally, the paper provides a sum-
mary of the tests and verifications made to ensure that the DSSS
incorporates the modeling specifications and produces correct
results.

Background

DTs have been regarded as suitable tools for making decisions
under risk because of their ability to represent the probability of
the consequences of decisions. They have been used in problems
related to a wide range of knowledge areas, such as legal prob-
lems �e.g., Blodgett �1986�� and research methods �e.g., Mock
�1972��, in addition to financial �e.g., Hespos and Strassmann
�1965��, engineering �e.g., Benjamin and Cornell �1970��, and
medical �e.g., Hazen et al. �1998�� applications.

DTs are solved by calculating the EV; the decision that yields
the optimum EV is the decision that should be taken �see the
appendix and Fig. 1�. The EV approach has been covered in a
wide range of publications �e.g., Raiffa and Schlaifer �1961�;
Meredith et al. �1973�; Taha �1997��. The EV has been criticized
for being unsuitable for one-time decisions, though it is suitable
for repetitive decisions. To make the DT suitable for one-time
decisions, attempts have been made to use the utility-converted
units of the decision maker. However, using the utility-converted
factors is practically difficult and more of a theoretical approach
than a practical one �Wideman 1992�, and it does not provide a
true picture of the ranges of the decision’s possible outcomes.

Most scholars tend to agree that the EV approach is suitable
for repetitive decisions because it represents the average out-
comes for the long run. However, the EV approach does not work
for all repetitive problems; it is suitable only for situations where
the decisions are not only repetitive but also deterministic, and the

realization of their chance events is estimated using a mass prob-
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ability function distribution. This fits the repetitive gambling ex-
ample where the decision maker
• Assumes full control over all the decisions’ variables �cost,

effort, etc.� along all stages of the decision problem;
• Knows with certainty the magnitude of the chance events; and
• Is able to estimate with certainty the probability of each

chance event �based on the number of possible outcomes rel-
evant to all possible outcomes�.

The EV based on a single number estimate is then suitable only
for a very limited scope of applications, which limits the useful-
ness of DTs to a very narrow scope of applications and makes
them unsuitable for most real-life engineering decisions—even
the repetitive ones. For more discussion on the shortfalls of the
single-number EV approach, readers may refer to Schuyler
�2001�, Hespos and Strassmann �1965�, Smith et al. �1983�, and
Ferrara and Hayya �1970�.

The one-time and repetitive decisions characterized by the
probabilistic nature of their parameters require treatment that dif-
fers from the single-number EV method. The stochastic approach
of DTs overcomes several of the limitations of the single-number
EV and can be suitable for such problems. It can examine the DTs
under a wide range of variables using ranges rather than single
estimates, which makes it more appropriate for uncertainty
modeling.

However, very few attempts have been made in modeling
using stochastic DTs. Hespos and Strassmann �1965� used sto-
chastic trees in a financial application. Hazen and Pellissier
�1996� used stochastic trees in medical decision applications, but
the main challenge of stochastic trees—similar to other stochastic
modeling—is their ability to represent the uncertainties of the
decision problem without sacrificing the necessary details in a
framework that can be used for generic decision problems. This
paper introduces an MLDT modeling approach that can be used in
a wide range of DT applications and presents a simulation appli-

Fig. 1. Conventiona
cation that supports the modeling concept.
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In the MLDT, each of the variables could be represented by a
range estimate, which includes the probabilistic realization of
chance events, the values of the chance events, and the values of
decisions. Decisions can be decomposed into smaller components
that represent their detailed breakdown. Each decision or combi-
nation of decisions can then be evaluated separately or collec-
tively, and the overall decision situation or any part thereof can be
evaluated. In the case of repetitive decisions, the EV can be cal-
culated and the optimality index obtained for each decision. The
decision optimality index identifies the probability that a decision
falls on the optimum decision path �e.g., in a repetitive decision�.
By examining the decisions’ variability �range of outcomes� and
the optimality index �optimization probability�, the decisions’
volatility compared with their optimality can be assessed. There-
fore, the decision maker can analyze the decisions based not only
on their long-term outcomes’ optimality �probability�, but also on
the risks inherent in the decisions �volatility�.

The following section highlights the challenges related to sto-
chastic DT modeling and introduces the need of MLDT for better
uncertainty modeling.

Stochastic Decision Trees

The use of the probability distribution functions in DTs was in-
troduced in Hespos and Strassmann �1965�, who call DTs that use
the EV approach a “conventional decision tree” and the DTs that
use the probabilistic estimate a “stochastic decision tree.” The
same differentiation is used in this paper. Hazen and Pellissier
�1996� define a stochastic tree as an “extension of a DT that
facilitates the modeling of temporal uncertainties” and permit the
use of probability estimates or frequency distributions for some or
all factors affecting decisions �Hespos and Strassmann 1965�.

Difficulties associated with modeling stochastic DTs arise in

ion tree components
l decis
four main aspects:
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1. The first relates to the ability of the modeling environment to
model generic DT problems. While conventional DTs can be
solved mathematically using simple arithmetic, simple
probabilistic problems require more advanced concepts. With
complex problems, mathematical solutions become more dif-
ficult. Simulation provides an appealing method for solving
complex problems, but most of the simulation platforms are
problem specific: that is, reprogramming or program modifi-
cation is required for each problem. The DT simulation plat-
form should be able to model general types of DTs without
the need for reprogramming.

Special purpose simulation �SPS� allows an experienced
simulationist to build a template �a collection of modeling
elements targeted for a single domain� that can be used by
inexperienced users �Hajjar and AbouRizk 2002�. The appli-
cation of this paper uses Simphony, an SPS computer plat-
form �AbouRizk and Hajjar 1998; Hajjar and AbouRizk
2002�; hence, the modeling environment can be used as a
generic tool for a wide range of DT problems.

2. The second difficulty relates to the decision model’s ability
to incorporate the complexity of the decision problems and
be dynamic enough to incorporate more details �uncertain-
ties� as information becomes available. Complexity can be
addressed in two directions: horizontal and vertical. The
horizontal direction relates to the sequential characteristic of
decisions along the time line �i.e., each decision leads to
another decision or to a state of nature on which other deci-
sions can be based�, and the vertical direction relates to the
decomposability of decisions.

The horizontal direction relates to controlling the tree
size. One advantage of stochastic DTs is their ability to
examine the tree under a wide range of values in a size
relatively smaller than conventional trees �Hespos and
Strassmann 1965�. However, the size of the tree can still go
“wild” �large�, where several sequential decisions and
several chance events are required. With MLDTs, decisions
can be broken down in a hierarchical scheme, allowing the
tree to expand vertically to accommodate decomposition of
decisions, reducing the tree size to manageable decision
stages.

Decomposability relates to the need to break down a de-
cision to smaller components to permit better modeling of
the uncertainties. To avoid the need to decompose decisions,
modelers use a high-level estimate where decisions are pre-
sented using single-density distribution functions, regardless
of the number and variability of the states of nature that
affect the decision. For example, the cost of a decision such
as “Drill a well” would be represented based on only one
continuous standard distribution function, although this deci-
sion might be affected by several activities and resources that
are in turn affected by several uncertainties, such as produc-
tivity, soil conditions, and weather conditions.

The cumulative impact of such uncertainties on the deci-
sion could be hard to simplify with a single distribution func-
tion. If these uncertainties are simplified by one range �e.g.,
using a triangular distribution function� of numbers, the re-
sults would not truly represent the statistical uncertainty of
the decision and could lead to a wrong decision. If the mod-
eler selects to incorporate these uncertainties in a one-level
tree, the tree would get unnecessarily large. Therefore, a sto-
chastic DT should be able to carry a hierarchical scheme that
allows decisions’ decomposability.
3. The third problem relates to estimating the magnitude and
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probability of realization of chance events when the magni-
tude, number, and probability of realization of chance events
are based on judgment. The one-level stochastic DTs assume
that one chance event may originate from a chance node. A
chance event would then carry a range of variables repre-
sented by a density distribution function. Such an approach
assumes that stochastic DTs should be perfectly stochastic:
that is, all branches of the tree are to be realized in each
simulation run, with states driven by the randomness. This
assumption is not always true and does not respond to the
yes/no realization of events. Moreover, one or both events
may be best modeled in ranges. The situation becomes more
challenging when the estimate of the realization of chance
events depends on experts’ judgments, where a precise esti-
mate of the probability of events realization is not practical.
Experts normally provide these probabilities in ranges; for
example, the probability of realization of an event could be
90 to 95%.

4. The fourth difficulty arises when one or more decisions in
the tree are dependent on the optimization of other sequential
decisions, for example, selection of a design method based
on life-cost optimization. A single-level tree structure forces
the modeler to neglect the variability of the independent de-
cision alternatives and to estimate an approximate, most
probable figure to the dependent decisions. The decision
maker considers the range of possible outcomes of a single
alternative and uses the estimated values of this alternative in
modeling the problem at hand, which produces a risk/benefit
profile that does not represent the problem. For example, a
dependent decision A could be affected by selection of a
replacement decision of a piece of equipment �optimization
shortest path/dynamic programming problem�. Under the
one-level tree, the modeler would estimate the cost of one
alternative based on the assumption that it is the most likely
optimum solution. This creates a false reflection of the deci-
sion problem. Considering the other alternatives would then
create a true presentation of the system. This is most impor-
tant when the optimization is to be taken in the future, and
the decision maker wants to keep all options open or wants to
understand the overall problem behavior.

The MLDT overcomes these difficulties and provides a new
method of looking at decision problems. It offers a method of
analyzing the problem at hand in a hierarchical way that permits
a better representation of the uncertainties. In the next section, the
multilevel approach is explained.

Multilevel Decision Tree Conceptual Framework

A stochastic multilevel tree is defined here as a stochastic tree
whose variables can be estimated by decomposing the tree ele-
ments into smaller components so that the variables can be esti-
mated in ranges. The multilevel tree consists of several layers.
The DT is modeled in a top layer in which each of the decisions
could be further broken down to another layer �in a lower level�.
These lower-level layers could have another tree, another net-
work, or a group of variables �e.g., resources such as materials,
worker-hours, and so forth�. Similarly, any component in this sec-
ond layer can be broken down to include other components in
lower layers. The values of these components could be estimated
as a single estimate or as ranges.

The tree breakdown structure enables the modeler to estimate

the tree using other types of networks and/or any number of pa-
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rameters. Fig. 2 shows a conceptual design of an MLDT that
consists of two decisions: A and B. Each of these decisions is
broken down to another decision tree, so decision A in level 0 is
the outcome of solving the decision tree in level 1 �by inheriting
the EV of the level 1 DT�. The solution of the trees in level 1
�e.g., the selection between decision Al and A2� provides the de-
cision in level 0 with the values �e.g., the cost� of the decisions.
Such values are used in solving the tree in level 0. Similarly, any
decision in level 1 may be further broken down to DTs. Decisions
in an MLDT may get stochastic or single-number estimates.

While Fig. 2 shows the subsystems in the lower layers as DTs,
subsystems could be a stochastic optimization shortest/longest
route network �using the dynamic programming algorithm�, a
cost/time network �range estimate�, or several resources/
parameters. An explanation of how other networks can be mod-
eled inside the MLDT is outside of the scope of this paper �for
more explanation of other types of networks, see Moussa et al.
�2004��.

A branch in an MLDT can be perfectly stochastic, that is, all
chance nodes in the branch precede only one chance event. Dur-
ing simulation, all the elements in the branch are realized; a
branch can be semiperfect, that is, some but not all of its chance
nodes precede more than one chance event. The realization of the
branch depends on the probability assigned to its chance events.

Fig. 2. Conceptual d
For example, the branches connected to decision A in level
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0—Fig. 2—are imperfectly stochastic, while that connected to
decision B is perfectly stochastic. Values along a perfectly or
imperfectly stochastic branch may be deterministic or stochastic
�estimated in ranges�. During simulation, perfectly stochastic
branches realize 100% of the time, while the imperfectly stochas-
tic ones realize a number of times driven by the probability asso-
ciated to them. On the other hand, decision A is a perfectly
stochastic decision because it is realized 100% of the time; how-
ever, the chance events succeeding it are imperfectly stochastic
because they are realized only part of the time.

Decision Support Simulation System Template

The DSSS template developed within an SPS platform includes
the elements required to model three modules: tree analysis net-
work �TAN�, shortest and longest path dynamic programming
analysis network �DPAN�, and cost time analysis network
�CTAN�. A DSSS TAN module supports both single-level DTs
and MLDTs. The template consists of 17 modeling elements,
which are color coded so that elements with similar colors are
used by one module. The TAN module uses nine modeling ele-
ments, which are also required to model a DT.

Fig. 3 shows a conceptual illustration of a DT using DSSS
notations. The DSSS has three elements additional to the conven-

illustrating MLDT
iagram
tional components shown in Fig. 1. The “DT Branches Sum”

INEERING AND MANAGEMENT © ASCE / DECEMBER 2006 / 1257



component collects the payoffs of connected realized tree
branches during simulation to produce the utility/risk profile of
any combination of decisions. The “Start Node” creates the re-
quired entities for the simulation �i.e., initiates the simulation�.
The “Root Element” is the root of the vertical hierarchy of a
model; it works as an overall envelope to a model and collects the
results of calculating a model. For example, in a DT, the root
element collects the EV of the tree; in a CTAN, the root element
collects the overall cost and duration of the network; and in a
shortest/longest route network �DPAN�, the root element collects
the value of the optimum route. The other six elements are a
decision node, a chance node, a terminal node, a decisions ele-
ment, and two elements for chance events.

A network in the DSSS should be constructed in the lower
level of the root element, which collects information from the
model created in its lower level. The root element may be inserted
inside an element of a model so that the model may be con-
structed as a child to an element. If the root element is constructed
in a lower level of an element, the information collected from its
lower-level model is transferred to the higher-level element, and
the model in the higher level is then calculated using this infor-
mation. The MLDT is therefore calculated from the bottom up by
calculating the models and parameters in the lower levels first and
then transferring the value of these models up to the upper-level
elements through their root elements and so on, up until the first
root element of the overall model.

For example, the conceptual illustration in Fig. 4 shows the
root element at the top of the figure. Underneath the root element

Fig. 3. Decision tree-DS
is a decision tree that represents a hypothetical example of selec-
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tion between two decisions regarding the construction of a new
terminal: �1� modify an existing harbor, or �2� construct a new
harbor. Consider that these decisions do not have to be broken
down to other decisions. Each of these two projects consists of
activities that need resources �labor, equipment, materials, and so
forth�. The cost of the resources depends on the quantity of work
to be done, the time frame of the activities, the market conditions,
and so forth.

Collectively, the project cost depends on its overall duration.
Such uncertainties in the project cost can be modeled using a
stochastic cost and time analysis network �CTAN�. Therefore, for
example, the decision “construct a new harbor” has a root element
in its lower level. The root element collects the cost of the net-
work in its lower level and transfers this cost up to the decision
branch in the decision tree; that is, it collects the sum of the costs
of realized activities and transfers this cost to be the cost of the
decision “construct a new harbor.” The same would be done if the
other decision has a CTAN in its lower level. The DT is then
calculated with the costs inherited from lower levels. Similarly,
any of the activities in the CTAN could be broken down to an-
other CTAN, to a decision network, or to resources. When values
are estimated in ranges using a density function, the simulation
uses these density functions to generate the random numbers and
hence calculates the networks using these generated numbers. At
the end of simulation, the statistical results of the calculation are
collected, and the modeler can retrieve them in a tabular or

in hierarchical structure
SS ma
graphic format for analysis.
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Multilevel Stochastic Decision Trees Modeling
Specifications

The following specifications have been identified as implementa-
tion requirements for a TAN in a multilevel network environment.
They were successfully incorporated in the existing DSSS. While
these specifications represent features incorporated in the DSSS,
they are summarized here to present the modeling concept of the
MLDTs. The emphasis is in the modeling characteristic, not in the
computer program.
• A node �a decision or chance node� may be preceded by any

number of branches. Each branch could have probabilistic
�density distribution� or/and constant values.

• It should be possible to estimate the cost of a decision by
decomposing the decision to its smaller components where the
cost of the decision is the sum of these components. Also, the
cost of decisions could be estimated as a lump-sum estimate
�whether it is a constant or probabilistic estimate�. Decisions
can be assigned any number of resources �e.g., labor, materi-
als, money, efforts, and so forth�. The value of each resource
can be a function of the quantity of the resource and the value
of its unit of measurement. Both resource quantity and unit

Fig. 4. Decision tr
rate can be either a constant or a density distribution function.
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• The decision’s cost may be estimated as a function of the cost
of another network. By supporting a hierarchal structure, the
output of a network calculation/solution could be the input of
an element in another network. For example, the cost of a
decision in a DT problem may be estimated as the cost of a
project resulting from a CTAN model.

• The modeler should be able to estimate the realization prob-
ability of the chance events using single numbers �determinis-
tic� or/and a range of the likely probabilities. If all chance
events at a chance node are deterministic, the sum of the prob-
ability should be equal to 100%. If the chance events are esti-
mated by ranges, the total upper or lower limit could be not
equal to 100%. For example, in a three chance-events node,
the user may specify the probability of outcomes as 30 to 40%
for the first event, 60 to 75% for the second event, and 5 to
10% for the third event. Such flexibility gives users a more
realistic approach in estimating the likelihood of events’ oc-
currence based on judgment. Chance events labeled by such
probabilities can be estimated as ranges or/and as single
numbers.

• The MLDT should permit feedback to previous decision nodes

mple using DSSS
ee exa
or event nodes and accept loops �cycles� based on probabilistic
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estimates. It also should be able to model coalesced decision
trees �decision trees that contain branches that can be col-
lapsed where outgoing links meet in a common node�.

• The MLDT should do a forward path calculation to provide
the ranges of possible outcomes �payoffs� at each terminal
node. The forward path should also collect values along real-
ized branches to produce the utility/risk profile at the end of
the simulation. The utility/risk profile is the cumulative density
function �CDF� from which the modeler can estimate the value
of the branch at any probability level.

• The MLDT should be able to do a backward calculation �fold-
ing back the tree� by calculating the EV at each element. Using
the EV, the tree should provide the optimality index for the
decisions �probability that the decision falls on the optimum
solution of the tree, that is, the optimum path that yields the
EV�. The EV calculation should be based on minimization or
maximization optimization criteria.

• The EV in an MLDT is calculated and provided in a range of
possible outcomes. In the case of repetitive decisions, the
range of the EV of a decision represents the decision’s long-
term range of outcomes, and the optimality index provides the
probability that the decision is the optimum decision. In one-
time decisions where the tree branches are perfectly stochastic,
the range of EVs represents the range of possible payoffs;
hence, the optimality index represents the probability that a
decision will fall on the optimum decision path.

• The modeler should be able to retrieve the statistical distribu-
tion of the input values as well as the output values �results of
calculations� at any element. The user should be able to re-
trieve the calculation results at any node/element in the tree
either as statistical distribution results �CDF graph or tabular
format� or as a database table that shows the results for each
run.

• The platform should be able to model generic decision trees
without the need for reprogramming.
The specifications above have been implemented in the DSSS;

accordingly, the presentation of the DSSS in this paper will reflect
the criteria specified for an MLDT. Although the MLDT is an
extension of conventional trees, constructing an MLDT requires a
different decision analysis and building structure. The following
section explains the method for analyzing a problem using the
MLDT approach.

DT-DSSS Modeling Process

The first step in building an MLDT is to establish the DT hierar-
chy. The first level of the hierarchy includes the main milestones
of the decision processes. Each milestone is characterized by one
or more major decisions that characterize the decision process.
Then, each of the decisions in the first level can be broken down
further, as explained earlier, to other types of networks or re-
sources. Each element in any network can also be decomposed to
other networks or resources. The number of levels below the dif-
ferent decisions of the first level may vary based on the break-
down required for each decision.

Fig. 5 shows a hypothetical example of an MLDT. The ex-
ample shows a DT for the selection between two design methods
for an offshore structure. The designers are considering the design
of a jetty using piles or quay walls. Each of these decisions could
have consequences that relate to the life expectancy of the struc-
ture, the maintenance cost during the life cycle, the construction
cost, and so forth. The first alternative can be broken down to

either concrete piles or steel piles. The tree decisions �the quay
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wall decision, the concrete piles decision, and the steel piles de-
cision� can then be decomposed to a CTAN. The CTAN of each
decision can consist of a cost/time network represented in a pre-
cedence logic diagram that outlines the activities’ sequence of
work. The CTAN carries the uncertainties related to activities’
costs, durations, alternative relations, and so forth �see Moussa et
al. �2005� for more about the CTAN�. Activities may also be
assigned resources such as barges, cranes, concrete, and steel.
Each resource may be assigned uncertainties that affect its quan-
tity or unit cost �e.g., a soft soil condition may realize a probabil-
ity of 15%; if realized, the pile length will increase by 40 to 60%.
Similarly, activities could represent decision points and be con-
nected to DTs in a lower level.

As seen in the example above, the decision maker establishes
the problem decision hierarchy from top down. The next section
describes the calculation of the MLDT.

MLDT-Calculation Procedure

During each simulation run, the MLDT generates random num-
bers that fit the user input density functions. User inputs include
• Cost and/or benefits of decisions;
• Cost and/or benefits of chance events;
• Probability of chance events �single/constant probability or

range probability�; and
• Values of any parameter in lower-level layers.

The tree is then calculated using the following order:
1. Networks at the lowest level are calculated first. Based on the

discussion above, a layer may be any or a combination of the
following:
• DT: the tree is calculated as explained below.
• CTAN �project cost/time analysis network�: the network

is calculated by summing the cost of its realized activities
�CTAN models activity networks in a precedence diagram
with or without a probabilistic estimate for the realization
of the activities�.

• DPAN �a shortest/longest route optimization network
using dynamic programming algorithm: the network is
calculated according to the optimization criteria specified
by the user�.

• Resources: the resources cost values are summed �re-
sources cost = unit price � unit cost � impact of any
risks that might be assigned to the resource�.
The values calculated by the networks and resources are

then transferred to the upper-level element. Once all lower
elements of a network are calculated, the network in this
layer is calculated �each depending on the type of network�.
The process continues till the first-level DT.

2. When all the parameters of a decision tree �at any level� are
calculated �or assigned�, the DT performs the forward path
calculation. Through the forward path, the DT calculates the
probability of realization of each element �in the case of
imperfectly stochastic branches� and calculates the payoffs at
the terminals. The probability of realization of an element is
the product of probabilities of chance nodes preceding it. The
payoff is the algebraic sum of all costs and benefits of a
branch and represents a possible outcome from a decision.

For imperfectly stochastic branches, the DSSS generates
independent random numbers during each run at each chance
node. Based on this generated number, one branch is real-
ized. If a branch is realized, the utility/risk factor of this
branch is assigned a value that equals the payoff calculated

earlier. If the branch is not realized, the utility/risk factor gets
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a zero value. The chance nodes work as filters that pass val-
ues only for realized branches. The program collects the sta-
tistics of utility/risk at each terminal, and the statistical re-
sults provide the range of outputs associated with a branch
versus the probability of realization of this branch; hence
they indicate the utility/risk associated with the branch
terminal.

The payoff represents the range of possible outcomes
based on a scale of probability that ranges from 0 to 100%. It
then provides the range of outcomes of a branch independent
of other decisions/branches. In contrast, the utility/risk at the
terminal provides the possible outcome in relation to all other
consequences that originate from the root decision. There-
fore, if a branch is realized 10% of the time during simula-
tion, the utility/risk profile at the terminal is the payoff in
relation to these 10% chances or realizations. The CDF graph
gives the range of payoffs for the probability between 90 to
100%; that is, at a probability less than 90%, the branch
payoff is zero, while for the 10% range between 90 and

Fig. 5. ML
100%, each probability would have a relevant value indicat-
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ing the payoff at this particular confidence level. More illus-
trations of the difference between the payoff and the utility
concept are provided later in the paper.

The tree also performs a backward calculation. The pro-
gram calculates the EV at each element starting from the
payoff values calculated in the previous step similar to the
algorithm used in conventional trees �see appendix �. The EV
of an element is transferred to the previous element based on
the optimization criteria specified by the modeler �maximum
or minimum�. When the backward path is complete and the
EV of the first node is determined, the path leading to this
EV is marked.

3. The processes described above are repeated during every
simulation run. �Each simulation iteration generates indepen-
dent random numbers and provides each element in the
multilevel network with a different value than that given in
other simulation runs.� At the end of simulation, the DSSS
calculates the optimality index for each element �the prob-
ability for a decision to fall on the path that yields the

e example
D tre
optimum EV�:
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Optimality index

=
number of times element falls on tree solution path

number of iterations

�1�

4. Finally, the DSSS collects the statistical results for the inputs
so that the user may review his/her estimates, including val-
ues delivered from other networks or from the costs of allo-
cated resource parameters and for the calculated results �i.e.,
the EVs, the payoffs at terminals, and the utility/risk for any
combination of branches�.

DT-DSSS Results and Interpretations

The fundamental difference between conventional and stochastic
trees is that the first provides a single solution, that is, it tells the
modeler which decision should be taken while the stochastic trees
provide a range of outcomes. The range of outcomes shows the
behavior of the decision problem for the purpose of understanding
it. The decision maker is then able to take the decision that best
reflects his/her preference/utility. In the case of repetitive deci-
sions or perfectly stochastic decisions, the MLDT provides the
optimality index that reflects the probability associated with each
decision being an optimum decision.

As a result of running a simulation a sufficient number of
times, the MLDT of the DSSS provides the following results:
• Payoffs at each tree terminal in a CDF graph and a tabular

form at each branch end: These provide the decision maker
with the range of possible outcomes for each possible
scenario.

• Utility/risk at each terminal or any combination of terminals:
The “DT Branches Sum” of the DSSS can be connected to the
branches’ terminals to collect the outcomes of each realized
branch and produce the statistical results accordingly. When
several branches are connected, the information at the “DT

Fig. 6. Stochastic
Branches Sum” represents a decision at an early stage.
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• The EV of any decision: The EV represents the average range
of possible outcomes in the long run. In perfectly stochastic
branches, the EV equals the payoff of the branch and hence
also shows the utility/risk of the decision.

• Optimality index: When the decision problem is repetitive in
nature �e.g., investment/reinvestment decisions� or when the
DT is perfectly stochastic �all terminals are realized during all
simulation runs�, the optimality index represents the probabil-
ity that a decision is the best decision.

• Results at each DT element �nodes and links�: At each node,
the DSSS provides the CDF graph and the ranges of results
using a tabular form that shows the model inputs/outputs.
To explain the use of the DSSS results, an example is given.

The example extends from those shown in Figs. 4 and 5. Consider
a decision of either modifying an existing harbor or building a
new one. If a decision is made to build a new one, the new
construction can be built on quay walls or on piles. The cost of
the quay wall construction is estimated as a triangular distribution
of $28,000–$32,000–$40,000 �all numbers are in thousands�. The
average estimated maintenance cost over the life of the project is
estimated to be $6,000 with a standard deviation of $1,200. The
piling option is estimated as a triangular distribution of $22,000–
$25,000–$33,000. At a 5 to 10% probability, the piling structure
may require major repairs along its life; the cost of repair and
maintenance is estimated as a triangular distribution of $15,000,
$18,000, and $22,000. If no major repair is required, however, the
average cost is estimated to be $6,000 with a standard deviation
of $1,200. The cost of modifying an existing harbor is estimated
as a triangular distribution of $22,000, $25,000, and $36,000, and
the estimated average maintenance cost is $10,000 with a stan-
dard deviation of $2,500.

Fig. 6 shows the decision tree of this problem as modeled by
the DSSS. �For the purposes of simplicity and because of limited
space, this example does not include lower level networks.� Val-
ues in the graph are in millions. As shown in Fig. 6, the two

ion tree example
decis
terminals of the piling decision are connected with a “DT
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Branches Sum” node �Sum 1�. This node collects information
from the terminals preceding it to show the utility/risk for the
piling decision. Similarly, the node Sum 2 is connected to the
terminal of the Quay Wall decision and the node Sum 1 to show
the utility/risk of the new harbor decision. The end terminal of
modifying the existing harbor does not require a “DT Branches
Sum” node because it relates to only one decision.

The following explains some of the results that may be ob-
tained from the MLDT of the DSSS:
• Fig. 7 shows the CDF graph at terminal 1 �the node terminates

the branch “new harbour-quay wall.” The figure shows the
CDF graph for this path. The branch is a perfectly stochastic
branch, and hence the payoff, the EV, and the utility/risk are
the same. From the CDF graph, it is possible to estimate the
cost at any confidence level. For example, at a 70% confidence
level, the cost is approximately $41,000 or less. Similar CDF
can be obtained by investigating the results at the decision
“quay wall.” The tabular results at this decision show the av-
erage EV �also the payoff and risk/utility� and its standard
deviation �Fig. 8�. Fig. 8�a� shows that the quay wall decision
is realized 100% of the time-and that the optimality index is
only 4.3%. Results relating to the input at the decision are also
given. Fig. 8�b� shows that the optimality index for the pile
decision is 75.9%.

• The results of the calculations at terminal 2 and terminal # 3
may be retrieved in CDF graphs and in tabular forms. Fig. 9
shows the utility/risk of terminal 3. The figure also shows that
the results of the curve fall between approximately 8% to

Fig. 7. Stochastic decision tree
100%: i.e., a range of 92%. �The results of terminal 2 are then
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from 92 to 100%: i.e., in a range of 8%�. The graph shows the
consequences of the decision if only minor repairs are
required.

• The analyst may obtain the results at any node and compare
results to understand how each decision behaves. Based on
his/her utility, the decision maker is then able to select the
decision that best reflects his/her risk tolerance.

• Once a decision is made �or once the alternatives are narrowed
down to a smaller number of decisions�, the analyst can elimi-
nate other decisions from the model and run the simulation
again to study further the selected decision�s�. The rerun of the
simulation after eliminating discarded decisions will produce
results that can be studied. The decision maker can estimate
his/her budget based on the results of the simulation based on
the risk tolerance level of the organization.
With the MLDT, the decision maker has the tool to support

his/her position rationally and estimate more accurately the risk
exposure of his/her problem by better modeling of the uncer-
tainty. The MLDT provides better modeling of uncertainty than
does the single level because of its ability to reflect the complex-
ity of decisions without sacrificing the necessary details.

Testing and Verification

To ensure that the simulation platform provides the expected re-
sults and incorporates the specifications described earlier, several

ple—CDF graph at terminal 1
exam
tests and verifications were conducted on the DSSS. Below is a
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summary of the tests and verification conducted:
• Verification test: performed by executing the program using

examples to find errors. The verification test was done in two
stages:
1. During development of the DSSS, several deterministic

conventional DTs and deterministic networks were con-
structed in a multilevel framework. The results of the
DSSS were compared with the results of solving the net-
works manually. The template was also tested using inde-
terministic examples. Template results using stochastic
examples were retrieved using database files, and the re-
sults were manually checked for several iterations. Statis-
tical analysis to the results stored in the database files
were also conducted and compared with the template re-
sults. Wherever applicable, corrections and modification
to the template were made.

Fig. 8. Simulation outputs and statistics re
2. After developing the tool, the DSSS was used by students
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in the Project Management Specialization at the Univer-
sity of Calgary at both the graduate and undergraduate
levels for the academic years 2003 to 2005. Students were
asked to create examples and apply the DSSS to these
examples. �Moussa et al. 2005; Ruwanpura et al. 2005�.

• Code test: during the coding and development of the DSSS,
the logic was examined through test cases to validate the ex-
ecution of each instruction in the program.

• Unit test �bottom-up testing�: each module was divided into
several submodules, and each submodule was tested separately
to locate errors. For example, the DT is a submodule to the
TAN. The DT is then divided into two main processes: for-
ward path and backward path. Each subsection is tested to
ensure that the calculations for any and all iterations are
correct.

• Up-down test: each module was tested from the upper-level

�a� quay wall decision; �b� piling decision
sults:
down by checking that the upper-level results collected infor-
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mation from the submodels correctly and that submodules’
interactions did not provide wrong results.

• System test: tested the integration of the components of each
module and the interrelation among several modules to ensure
that the hierarchal relationship was error free.

• Objectives test: during coding and upon completion of the
program development, the program results were checked
against the identified specifications to ensure that original ob-
jectives, current specifications, and system results were
compatible.

• Peak load and performance time test: the fully loaded Time
and Cost network, which consists of approximately 75 activi-
ties, three of which were linked to DTs and two of which were
linked to dynamic program networks, was developed to
determine whether the program could handle the volume of
activities that could occur in a real-life midsize project. The
simulation time for 1,000 runs was approximately 60 min.

• Human factors test: the DSSS was given to users at different
computer and modeling levels to determine how users would
interact with the program. The test aimed to make sure that the
program was user friendly. There were no complaints about
the difficulty of the program. Modeling a small network that
consisted of 20 nodes took novice users 15 to 25 min. Tests
were done under the Windows XP operating system using a
Pentium 4 and 3 Intel processors.

Conclusion

Decision trees �DTs� provide a powerful method for visualizing
and analyzing decisions. Conventional methods of solving DTs do
not respond to stochastic needs and are not suitable for most
real-life decisions. This paper introduced the MLDT as a better
method for uncertainty modeling. The MLDT introduced in the
paper is supported by a DSSS computer application that is devel-

Fig. 9. Terminal 3: CD
oped under a special purpose simulation platform. The MLDT
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overcomes the limitation of decision trees in that it accepts de-
composability to decisions and enables modeling complex deci-
sions without sacrificing the detailed presentation of uncertainty
in a manageable framework. The modeling computer application
presented in the paper accepts constant and density distribution
values and integrates with other networks supported by the DSSS
template. The DSSS-DT module accepts loops �feedback to pre-
vious decisions�, allows estimating probability of events based on
a range estimate, provides the optimality index for each decision,
and provides the utility/risk profile for any decision and any com-
bination of decisions.

The DT module was used by students in the civil engineering
program at the University of Calgary at the undergraduate levels
for the academic years 2004 to 2005. Students were asked to
create examples and apply the DSSS to these examples. Ruwan-
pura et al. �2005� have emphasized the value of DSSS for teach-
ing purposes: “The civil engineering program at the University of
Calgary has successfully taught the risk and simulation related
concepts and applications over the last two years. The develop-
ment of DSSS has enabled students to learn these concepts with
ease. Further, the wide range of applications that the DSSS can
model makes it a suitable tool for both practical and educational
purposes.”

Acknowledgments

The writers acknowledge the funding of the Natural Sciences and
Engineering Research Council of Canada �NSERC�’s Research
Grant Programs–Individual for “Comprehensive Modeling
Framework for Managing Construction Projects.” The writers
wish to acknowledge Dr. Simaan AbouRizk, NSERC/Alberta
Construction Industry Research Chair, for his permission to use

h of utility/risk profile
F grap
Simphony to develop DSSS and to use it for teaching purposes.

INEERING AND MANAGEMENT © ASCE / DECEMBER 2006 / 1265



Appendix. Conventional Decision Trees

Conventional DTs are covered by a wide range of publications
�Meredith et al. 1973; Revelle et al. 1997; Hillier and Lieberman
2001; Taha 1997�. A brief explanation of the DT components and
computational procedures are provided below for easy reference.

A DT consists of five main components �Fig. 1�:
• Decision nodes: represented by squares; they precede variables

or actions that the decision maker can control.
• Chance event nodes: represented by circles; they precede

events that the decision maker cannot control.
• Terminal: end points where outcome values are attached �tree

leaves�; they present possible outcomes of the tree decisions.
• Decision branches: represent alternative decisions available to

decision makers.
• Chance events: represent possible outcomes of decisions; they

are assigned probability.
If X1 ,X2 ,X3 , . . . ,Xn are mutually exclusive chance events that

could possibly occur at a chance node, then

�
i=1

i=n

P�Xi� = 1 �2�

where P�X��probability of the realization of chance i that n’s
chances originated from a chance node.

A tree starts with a decision node. The start node represents the
tree’s root. Fig. 1 shows a simple DT with two decisions and three
chance events resulting from each decision. To solve a DT, the
analyst calculates the EV at each node and takes the decision that
yields the maximum EV at the root. The following summarizes
the EV calculation procedure:
1. Identify alternative decisions and their cost.
2. Identify the possible outcomes of each decision.
3. Estimate the probability of the outcomes; if there are subse-

quent decisions or outcomes, steps 1 to 3 are to be repeated.
4. Draw the tree chronologically from left to right and calculate

the payoffs at the end of each branch.
5. Fold back the tree to calculate the EV and take the decision

that has the optimum EV.
A DT is constructed from the bottom up �from time zero up�,

analyzed from the top down, and finally implemented from the
bottom up �Revelle et al. 1997�. Values in the tree should be
discounted to the net present value to reflect the to-date estimate.
The EV is calculated so that
• At chance events, the EV equals the sum of the values of the

chances multiplied by their probability

EV = �
i=1

i=n

XiP�X� �3�

where X�value of chance event i , P�X��probability of real-
ization of chance event value for n chance events.

• At the decision nodes, the EV equals the optimum EV at the
node �minimum or maximum as per the utility optimization
criterion required�.
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EV = MAX�U� �4�

where U�utility of decision maker.
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