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ABSTRACT

The use of a standard four moments approach has been advocated in the past for risk analysis
of construction project estimates and economic measures., The approach calls for the
computation of the four central moments of the performance function using an approximated
Taylor series expansion. The four moments are then fitted to a distribution from the Pearson
distribution family. In instances where this approach vields accurate results, it can offer a
significant alternative to simulation. However, in instances of high non-linearity of the
performance measures, results from such an approach do not match well with those from
Monte-Carlo simulation. This paper investigates this issue and introduces an expanded four
moment formulation that provides a more accurate estimate of the moments than that offered
by the standard moment approach. A number of examples using summation, multiplication,
division, and exponentiation were used to investigate and compare the three approaches, with
attention being hmited to independent variables (i.e. no correlation). The results of the
analysis demonstrate that the expanded four moments give better estimates than the standard
moment approach. However, it is shown that when performance measures involve variables
of higher exponent/power, both approaches produce results significantly different from those
obtained by simulation.
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INFTRODUCTION

For risk analysis of construction estimates and project economics, the moment approach can
be used to determine the first four moments of a performance measure/system function given
knowledge of the probabilistic characteristics of the primary variables of the system function
(Siddall 1972). A probability distribution is then characterized from one of the distribution
families; commonly the Pearson distribution family is used. The derived moments of the
system function, however, are not the exact moments since contributions from moments
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higher than the fourth level of the primary variables are generally not available and thus the
moment estimating equations do not include all applicable terms. Introduced in this paper is
an expanded four moment formulation for system functions. The virtue of this formulation is
investigated through a number of cases which explore the closeness of the four moments/
distributions to the exact/near exact ones obtained by large scale Monte-Carlo simulation.

STANDARD FOUR MOMENTS AND PEARSON DISTRIBUTIONS

Following Hahn and Shapiro (1967) and Siddall (1972), the first four moments of a system
function can be obtained using the first four moments of the primary variables in the system
function. The moment approach involves expanding the system function using a multivariate
Taylor series, generally up to the second order, around the means of the primary variables.
Then, by taking expectations of the expanded system function, the four moments of the
system function are obtained, defined here as standard four moments. Let Z to represent a
system function f(x) in which x is a vector of random variables x; where i = 1,2, ..., n (i.e.

X1y X2, ..., Xa); f(X)is Z calculated at the mean values of x; fl " and fi” are the 1% and 2™

partial derivatives of Z with respect to the i-th variable in x; pi,, W2, U3, and p, are the
expected value, and 2™ to 4™ central moments of the variable 7 1 (2), By(2), pny(Z) and
1, (Z) are the expected value, 2™ to 4™ central moments of Z:
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Since probability distributions can be characterized by four or more parameters, e.g. their
location (mean), dispersion (variance), skewness and kurtosis, families of distributions were
developed such that a specific distribution could be characterized from within the family.
One of the common distribution families is the Pearson distribution family which
encompasses a wide range of shapes and includes several common distributions such as the
Normal, LogNormal, Beta, Gamma, Exponential and Uniform (Johnson et al. 1963; Elderton
and Johnson 1969; Hahn and Shapiro 1967; Johnson et al. 1994; Ord 1972). Thus, given
estimates of the first four moments of the system function, probabilistic statements can be
made using the best fit Pearson distribution.



THE ANALYSIS

The four moments of a system function, however, are not the exact moments since
coniributions from moments higher than the fourth level of the primary variables are not
included and because not all the moment terms of the primary variables are included, as well.
Interestingly, there is little discussion in the literature as to the accuracy of the standard
moment expressions or the magnitude of the terms dropped. For example, the authors own
experience in dealing with moment approximations is that neglect of the skewness term for
the independent variables in the approximation for the variance of the system function can
introduce significant error. Including higher moments, however, would require more
computations and more information than what reasonably can be obtained for risk analysis.
Under such circumstances, the current work checks the reasonableness of the four moment
approach as used in risk analysis and introduces an expanded four moment formulation.

First, more accurate expressions for the first four moments were derived. They are called
expanded four moments and are presented in Appendix A. The new derivation includes all
the terms of the moments of the primary variables as well as the second partial derivatives of
the system function. Second, in order to achieve better estimates of probabilities, rather than
using the double-entry tables for Pearson distributions (Elderton and Johnson 1969), the
current work follows a characterization process that gives probabilities at any required value,
where given the four moments of a system function, a Pearson distribution is selected, its
parameters are estimated and its closed form is used to determine probabilistic estimates.
Third, a number of cases as identified in Table 1 were established for the analysis where for
each case the standard four moments and the new expanded four moments and their Pearson
distribution were compared to those of a large scale Monte Carlo simulation which involved
100,000 iterations. The cases includes simple formulations generally used in construction
cost and time calculations, and other cases of high non-linearity and higher order of power
which were included for the analysis of the approaches under worst conditions.

Table 1: Cases for the analysis
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CASE #1 SUM OF VARIABLES

A system function which involves the sum of variables is reflective of construction estimates
and present values computations. Table 1 shows six cases for the sum of variables where
Normal N(10, 5) distribution is used for the variables. N(10,5) was chosen to explain the
extreme or to how far the difference, if any, between the approaches could go since the
variance and the coefficient of variation are high. Figure 1 shows for each case the difference
percentage of the variance, 3" moment and 4™ moment of both the standard moment
approach and the expanded four moments when compared to the Monte Carlo simulation.
The results in the figure show that: (1) the increase in the exponential power of the variables
increases the deviation of the moments from those of Monte Carlo simulation; (2) the 4"
moment (kurtosis) is not reasonably estimated with both moment approaches except for cases
of lower order of power (3) the expanded moment derivation gives better estimates of the 2™
and 3" moments (variance, skewness); and, (4) the expected value is generally reasonably
estimated by both moment approaches. It could be concluded that performance measures,
such as construction time and cost would be reasonably estimated using the expanded
moment approach. In general, this approach gives better results than the standard approach
particularly when the vanables (high variance) have low order of power, e.g. two to three,
{(the order of power could be higher if the variables are of low variance).

Figure 2 shows sample of the Pearson distributions for SP4 and SP6. With lower order
power cases, e.g. SP1 to SP3, Pearson distribution of the expanded moment is better than the
Pearson obtained from the standard approach when compared to the simulation distribution.
However, 1n higher order powers characterizing a Pearson distribution would be difficult, if
not impossible (see SP6 in Fig 2). In nearly all cases, simulation percentile values matched
with a Pearson distribution fitted to the 4 moments of the simulation (“Sim M to Pearson”).
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Figure 1: Analysis for the sum of variables

4



probabilisy

! t 5
05 oy .o Z RN ”
gt
08 08 B
P T OO N 07 ) X
0g E s o
0.5 g 05 Xf’ d
o4 'é_ 0.4 FAN
x4
0.3 0.3 AN
02 02 Ea
01 0.3 -
8 s g e o 5 s
-1 o s40°  61dt 76 Al sad 0 5.10° L 1515 210 2540
vilues
——= Sim M to Pearsos = S M to Pearson
o BxgpandedMs e Exapanded Ms
#n Sinmlation e Similation
e 8 Standard Ms 7 2% SandardMs

Figure 2: Distributions for the sum of variables in SP4 (left) and SP6 (right)

CASE #2 PRODUCT OF VARIABLES

In addition to the sum of variables, the product of variables is generally used in construction
estimates and economics (e.g. uncertain unit rates times resource consumption level). Table 1
shows nine cases for the product of variables where Normal N(10, 5) distribution is used for
the variables. The cases are in three groups that differ in the exponential power of the
variables. Cases within a group differ in the number of variables. Figure 3 shows the
variance, 3™ moments and 4™ moments of the standard moments and the expanded four
moments as compared to the Monte Carlo simulation for each case. The results show the
following. The expected value is reasonably estimated for the first group P1 to P3 where both
moment approaches gave exact answers as the simulation; however the accuracy deteriorates
for the next two groups from P5 to P9, with P9 deviates by 60% from the simulation result.
The increase in the exponential power of the variables and the number of variables in the
product increases the deviation of the 2“d, 3“, and 4% moments from the simulation results.
The expanded moment approach gives better estimates of the variance and skewness
moments than the standard moments; however, both deteriorate equally for the third group of
higher power and number of variables. The 4" moment in both standard and expanded are
not reasonably estimated with the moment approaches for the product of variables.

Figure 4 shows sample of the Pearson distributions for P1, P3, P5, and P9. With lower
order power cases, e.g. P1, P3, and PS5, the Pearson distribution of the expanded moment
approaches better the simulation distribution. The increase in the power of variables and their
number deviate more the Pearson distribution from the simulation results as seen in P9. It
should be noted however when looking at both Figures 3 and 4, and for example P35, that
despite the large difference in the moment values between the expanded moment approach
and the simulation, the derived Pearson distribution is reasonably close to the simulation
results, and that the Pearson of the standard approach is fairly close but with larger tails.

CASE #3 DIVISION OF VARIABLES

Table 1 shows nine cases similar to those of the product of variables, however with Normal
N(100, 10) distribution used for the variables. Similar to previous cases, Figure 5 shows that
the increase in the negative power of the variables affects the 2™ to 4™ moments; the
deviation from the simulation results ranged between 20% and 80%. While the expanded
moments give better results, the 4™ moment has large deviation compared to the simulation.
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CASE #4 EXPONENTIAL CASES

Table 1 shows eight cases with variables multiplied and raised to the natural log e. In these
cases, X; 15 N(100, 10), x; is N(0.5, 0.05), x3 is N(0.5, 0.05), and x4 is N(10,5). Figure 6
shows the results of the analysis where the moment approach was a good match to the
simulation results. The expanded moments gives better estimates than the standard moments.
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CONSTRUCTION EXAMPLE

Here we example a highly abstracted and somewhat artificial representation of a work
package related to the construction of the caisson foundations for an elevated rapid transit
guideway of some 19.25 km in length in an urban arca, with the spacing between foundation
and supporting elements being 35 meters, resulting in 551 foundations and pier structures.
The example refers specifically to the drilling operation; caissons have diameter of 2 meters
and variable depth, depending on soil conditions, between 7 meters to 16 meters. Access to
the caissons locations is highly variable, which has a significant impact on set-up and
relocation time for the equipment spreads. Due to the rapid price movement and uncertainties
associated with geotechnical conditions, the work is done on cost plus basis. Cost to the
general contractor is 10% over the subcontractor cost, Basic information is shown in Table 2;
the P values are percentzles which were elicited for each variable and followed by fitting
processes that produced the probabilistic characteristics shown in the table.

Table 2: Variables of the example

Description P5 P50 P95 Distribut | E[X] olX] Skew- | kurto
-ion ness | sis

N No. of caissons | 551 551 551 - 551

3] Diameter of 2 2 2 - 2
caissons,
meters

d Depth of 7 10 16 LogN 10.555 | 2.837 0.826 4.236
caissons,
meters

M | Relocation/setu | 6 1 20 Logh 9.85 4.545 1.483 7.148
p, hours ] i

p Productivity, 2 8 10 Triangular | 7.333 1.529 -0454 | 24
m*/crhr )

Sor | Unit cost per 2500 2800 3300 LogN 2337 307.91 | 0.398 3.282
crew hr, $/crhr .

R # of crews 1 ) 1 1 - 1

P__| Profit margin 0.10 0.10 0.10 - 0.1

Cu_ | Indirect $fyr | 275,000 1§ 350,000 | 450,000 | Beta 3546390 | 54089 | 0.20G7 | 2.194

The time T; required for the i™ caisson and total time T and Cost C, for all caissons are
ﬂ:Mﬁ—Q—_fE in which Qi=7r-(%}2-di (5)

=555 M, p = A [M + pQ ) (yrs, 8 hrs/day, 5 days/week, 48 wks/year) (6)
Caz(1+P).[N.CO,. [M +pQ )+Cm T} (7)

In the example the variables M, Q, and p are assumed to be independent and identically
distributed for all 1 (551 locations). One crew is used through out the drilling operations.

The above time and cost formulations reflect some of the simple mathematical operations
described before. Performing the analysis on the time and cost of all caissons using the
standard and expanded moment analysis as well as Monte Carlo simulation of 100,000




iterations shows that the expanded moments have better results than the standard moments
when compared to simulation, Figure 7. Figure 8 shows how the Pearson distributions for
the time and cost coincided with that obtained using Monte Carlo simulation.
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Figure 8: Pearson and simulation distributions for the time and cost

SUMMARY AND CONCLUSIONS

The above analysis explained the performance of both of a standard moment approach and a
new expanded moment approach under several cases of sum, multiplication, division and
exponentiation. Four moments of each case and their characterized Pearson distribution were
compared fo their equivalents of a large scale Monte Carlo simulation.

The results of the analysis shows that both of the moment approaches could provide
reasonable estimates for construction and economic estimates conditioned on that the
formulation of these estimates is simple where the power/exponent of the variables is not
large. If the formulation encountered higher order of power the moment approach would be
used with cautions.



The analysis shows that the use of the expanded derivation of the four moments produces
better results than the standard four moments, particularly for the third moment/skewness of
performance measures. However, when experiencing variables with higher order of power,
both moment approaches largely deviates from near exact results of Monte Carlo simulation.

The use of the Pearson distribution family is significant to the moment approach where
closed form distributions and probabilistic estimates could be obtained. For construction
estimating and economics purposes, the use of Pearson would be fairly reasonable
particularly if the probabilities at the distribution tail are not of major interests to construction
decision makers. That is unlike risk analysis for safety and failure analysis where distribution
tail is of major importance. When working with cases that have variables of higher powers,
the use of moments might be questioned. For these cases, while the four moments could be
obtained, characterizing a distribution from the Pearson family would be difficult, if not
impossible. In such cases, another distribution family would be consulted or the analysis
could be conducted using Monte Carlo simulation.
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Appendix A

Taylor series expansion of a second order about the mean values of x as follows

f(x)= f(x)+Zf 5+— Zf 5%2 qu 8,6, (A1)

f=] fmi+]

Expected value:

{Z) = ELf(x)]

=)+ > i, -
i=1

Second central moment;
w(Z) = E[(Z - 11(Z) )*]
= E[(f(x)~ E[f(x)])*]
, -1 n (A3)
wE{(Zf 5+m Zf ST D S8 8 - Zf 12 } }
i=l j=1 f=i+1

=E{(H+1+J+K)2 }
1(2) = ElH? )+ B[} Bl )+ B[R]

+ EfpHI)+ Eps |+ EpHK )+ 210 )+ ERHK]+ Epk] A9
where,
E{Hz]z Zf,’ 12, (A.5)
~| y2 } C nZ
L[]"]::{ >, +— ZZf T2, 2, (A.6)
=} P=l j=i+d
2 )I""' n
[J }= Z Z (A7)
i=1 j=i+l
E +2IK = (Z A ”ij (A.8)
E[2HI = Z S ST w3, (A.9)

==

Third central moment:
p(Z) = E[(Z~ 1(Z))']

= E[(f(x)~E[f(x)])’]

2 - (A.10)
——E{(Zf 5+— Zf 5 +ZZf,I 5, -8, -~ Zf pzN
—E{(H+1+7+K)

It



(2 = B[+ B[P ]+ Bl )+ el
« Epar)+ epas |+ ehrk s Bpar |+ Eprst]e Eprk? ) Blsni)+ Elonik]

+ Eprs ) Eprk |+ Epu )+ Epix? |+ Eloun | D
+ EpsK |+ Bpuk?)
E{H3]m }3 £, (A.12)
Elr)=2 ZZf Sy #2+—ZZf ST 4y
i=} j= le [ES R ET RN | (A.l?:)
+»-ZZ Zf ST FE w2 p2; - 2,
{=f jei+lk=j+1]
E[ﬁ]: Z Zﬁj 3 3, (A.14)
E{K“ﬁ—SIKZ]mi-{iﬁ" -y,’sz (A.15)
n il
E[3H I] %[}:f’z 1" 4, *sz S 2 p2 Y S 2 ,u.z} (A.16)
i=1 =l =i+l f=d =]
E[sﬁ%‘} = 6-2 iﬂ»f;-ﬁjj 2, u2, (A.17)
E[3H2K] = (Z F ;zzl.)-[ﬁ : Z 1 /,12,} (A.18)
gpr =2 {Z YW LRIIRIES 3) WA ) ,uz} (A19)
f=l f=i+] izl jmi+l
EpH =3 [Zif fiG w32 “‘“sz 152, ,u3:i (A20)
3 n-1 n
[314:—2— ZZf f f” (A21)
i=] j=i+l
E[GHIK]:( y 1 ,azfj-[;-i fi ;13,.:1 (A22)

E[312K]= Zf;”-usz- Zf, 14 *““Zif TS m, ;12} (A.23)

I=t j=i+l

if;‘-yzi} Z Z f3ou2p2, } (A.24)

i=] i=1 j=i+]

EbU’]:E S if S5 ma, s +—-}:2f S5 m2, Y2y (A.25)
i=1 jeit+l i=] j=i+i
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