
Short communication

Economic evaluation of private power production under uncertainties

Weiguo Xing*, Felix F. Wu

Department of Electrical and Electronic Engineering, Center for Electrical Energy Systems, The University of Hong Kong,

Hong Kong SAR, People’s Republic of China

Received 28 March 2001; revised 27 November 2001; accepted 21 January 2002

Abstract

Private power production is becoming an increasingly important source of electricity generation. In developing countries, build–operate–

transfer (BOT) arrangement has emerged as a dominant form of private investment. Pricing private power production at its avoided cost is the

breakeven point for the utility in economic evaluation, and uncertainties must be taken into account. In this paper, an approach of calculating

the breakeven cost to the utility of a BOT power plant whose contract lasts for 10–25 years is proposed. The proposed approach requires the

computation of production costs from long-term generation expansion planning (GEP) under future uncertainties. To facilitate the inclusion

of constraints introduced by BOT plants in GEP and uncertainties, a genetic algorithm method is utilized in GEP. The breakeven cost is a

useful measure in the economic evaluation of BOT power plants. An example is presented to illustrate the economic evaluation of BOT

plants using the concept of breakeven cost. q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Private power production is becoming an increasingly

important source of electricity generation. Build, operate

and transfer (BOT) arrangement has been considered an

attractive model and has gained widespread popularity in

developing countries, especially Asia, such as the 700 MW

Shajiao-B power stations in China, 1200 MW Hab River

project in Pakistan, 300 MW coal-fired projects in

Philippines and 1000 MW Aliaga project in Turkey [1–3].

Briefly, BOT arrangement is one where a private power

development consortium, usually foreign, raises the finance

and builds a power plant whose output is purchased by an

electric power utility in the host nation. At the end of the

franchise period, typically between 10 and 25 years,

ownership of the plant is transferred to the host utility or

government, usually for a token payment. There are some

variations, such as build, operate and own (BOO). Here we

call them BOT for generality. The BOT arrangement provides

a ‘costless’ start-up for financially constricted governments

[1,2], and is therefore considered attractive. However, it

may impose significant long-term financial liability.

To mitigate future risks a BOT power plant usually asks

for an energy contract, which stipulates the delivered energy

amount, price and time periods. For example, in the Shajiao-

B project the Chinese agreed to purchase a minimum of

60% of the plant capacity (power off-take) annually on a

‘take and pay’ basis, and pay a fixed price per kilowatt hour

for the whole of the 10-year cooperation period. Due to the

long-term nature of the contract, the utility must evaluate a

BOT power plant considering its long-term impacts on the

future flexibility of system capacity addition and operation.

Long-term generation expansion planning (GEP) is such a

suitable tool for the economic evaluation of BOT power

plants. Some papers [4–6] discussed the integration of non-

utility generation into generation expansion planning of

utilities. Furthermore, inevitable future uncertainties

accompanying GEP, such as load growth rates, fuel costs,

etc. must be taken into account in the evaluation. There are

many lessons from utilities without deliberated consider-

ation about uncertainties. Therefore, much work has been

done to deal with uncertainties in GEP [10–13].

This paper concentrates on the pricing of BOT energy

contracts. It is argued that the utility should pay for the

private power generation at a rate which is commensurate

with what it would cost the utility to generate that same

excess energy using its own facilities, i.e. ‘avoided cost’.

However, this definition is too vague to directly implement.

In US and Canada, controversies surrounded the calculation

of avoided costs for non-utility generation [7–9], and

different interpretations and implementations have been
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adopted by electric utilities. To date, old contracts with non-

utility generation still have great impact on the operation

and development of electric utilities [9]. In addition, future

uncertainties are little concerned in the ‘avoided cost’

concept. BOT arrangement is a special type of private power

production where BOT power plants can only sell their

power to the host utility by energy contracts usually without

fixed capacity payment. Therefore to a utility, a suitable

method to evaluate the long-term avoided cost of a BOT

power plant under uncertainties is needed.

In this paper, a ‘breakeven cost’ concept for BOT power

plants is proposed, and GEP is used to calculate the

breakeven cost of a BOT Energy contract, as described in

later section. It needs an effective and robust approach for

GEP, which should easily include BOT constraints and

uncertainties. GEP is a highly constrained non-linear

discrete dynamic optimization problem, and uncertainty

makes this problem more difficult. To solve this compli-

cated problem, a number of approaches have been

developed successfully during the last decades. Stochastic

dynamic programming and decomposition approaches are

among the most popular methods [10–14]. However, there

are still some difficulties in the application and effectiveness

of these methods to practical GEP problems, such as

dynamic programming, ‘curse of dimensionality’ hinders its

practicability for large systems. Recently, some new

approaches are examined. A review of emerging techniques

on GEP is given in Ref. [15]. Among them, evolutionary

algorithms have shown a promising prospective [16,17],

which not only can treat the discrete variables easily, but

also overcome the dimensionality problem faced by

dynamic programming. In addition, they have the capability

to search for the global optimum and high suitability for

parallel computation. However these evolutionary algor-

ithms for GEP are deterministic without uncertainties

analysis. Even though they can be used as a tool for

scenario analysis, it is more convenient and suitable to

integrate uncertainties directly into the GEP modeling.

In this paper, a long-term breakeven cost of BOT is

defined based on GEP. Furthermore, a genetic algorithm

(GA) approach for GEP is developed which can easily

incorporate uncertainties and BOT constraints. Finally, the

suggested economic evaluation of BOT power plants is

applied to an illustrative system with 28 existing power

units, 4 types and total 40 units of candidate units.

2. Cost-benefit analysis of BOT power production

A utility may plan future generation addition from

various resources such as coal, oil, nuclear, LNG, etc.

Furthermore, different generation types, such as base,

middle and peak type will also be considered. As

deregulation is popular all around the world, private

power production, such as BOT, has become an important

part of generation resources. In order to evaluate the

economic impact of a BOT energy contract from the

viewpoint of long-term GEP, the breakeven cost of BOT is

defined, which is the price for an electric utility willing to

pay for BOT’s electricity. The breakeven cost of BOT can

be treated as a long-term ‘avoided cost’.

Assume EC0 and ECB is the expected total generation

expansion cost of the utility without BOT and with BOT

during the planning horizon, we define the breakeven cost of

BOT as follows

Breakeven cost ¼
EC0 2 ECB

TB
�QB

ð1Þ

where �QB is the annual contracted minimum energy

generated by BOT during the planning horizon, and TB is

the BOT power plant life in the planning horizon. It should

be noted that all quantities in Eq. (1) are calculated based on

present values.

The breakeven cost implies that a utility purchases a

BOT’s electricity in such a way that the utility’s total

generating cost should not change before and after the entry

of a BOT. Of course, the utility will make some changes

referring the breakeven cost according to corresponding

policies in order to attract private investors.

In addition, sensitivity analysis must be performed

further to examine the capacity and/or energy changes of

the BOT plant. The original generation mix of GEP may be

changed when the BOT is introduced in different intervals

and load factors.

3. Mathematical formulation of GEP under

uncertainties

To calculate the breakeven cost of a BOT power plant,

GEP under uncertainties must be performed. Optimal (GEP)

is to determine the least-cost capacity addition schedule that

satisfies forecasted load demands within the given reliability

criteria over a planning horizon. Therefore, the objective

function of least-cost GEP problem is to minimise the

expected sum of costs including construction costs and

operation costs. The GEP problem is mathematically

formulated as follows.

3.1. Objective function

min z ¼ E
Qij

XT
i¼1

XM
j¼1

ðajxij þ bjQijÞ

2
4

3
5

8<
:

9=
; ð2Þ

Xij ¼ Xiðj21Þ þ xij ði ¼ 1; 2;…; T; j ¼ 1; 2;…;MÞ ð3Þ

fij ¼
Xj

k¼1

Xik ði ¼ 1; 2;…; T ; j ¼ 1; 2;…;MÞ ð4Þ

Qij ¼
ðfiðj21ÞþXij

fiðj21Þ

LiðuÞdu ði ¼ 1; 2;…; T ; j ¼ 1; 2;…;MÞ ð5Þ

where E[ ] is the expection operator; T, the number of time
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intervals; M, the total number of technologies; aj, the fixed

cost coefficient of technology j; bj, the variable cost

coefficient of technology j; xij, the introduced amount

(MW) of technology j at interval i; Xij, the total introduced

amount of technology j till interval i; Qij, the total energy

output (MW h) of technology j at interval i; fij, the loading

point of technology j at interval i; Lj is the load duration

curve at interval i.

The objective function (2) is to minimise the sum of

discounted fixed (investment) cost and variable (operation)

cost over the planning horizon. Each xij is a decision

variable assumed to have discrete values. If a specified mix

of investments, i.e. matrix {xij}, is given, the problem is

reduced to a operation subproblem. The solution methods to

the operation problem depend on the degree of simplifying

the problem. Merit order, linear programming and dynamic

programming are among the most common methods. In this

paper, merit order is adopted using Eqs. (3)–(5).

3.2. Constraints

(1) Maximum and minimum capacity limits

xj;min # xij # xj;max ði ¼ 1; 2;…; T; j ¼ 1; 2;…;MÞ ð6Þ

where xj,min is the minimum capacity of technology j and

xj,max is the maximum capacity of technology j.

(2) Supply and demand balance

Uncertain load makes it difficlut to guarantee the demand

to be met at all times, so a more convenient way is to

introduce a penalty cost function that transfers unserved

load to economic loss in the penalty function.

EL ¼ pf ðLuÞ ð7Þ

EL is the economic loss due to unserved load; Lu, the total

unserved load and pf is the penalty function.

(3) Cost coefficient constraints

bj # bjþ1 ðj ¼ 1; 2;…;MÞ ð8Þ

3.3. Additional BOT constrains

We incorporate two additional constraints into our GEP

model for a BOT unit:

xB # �xBðMW capacityÞ ð9Þ

QB ¼ �QBðannual contracted energyÞ

Without BOT’s entry, each unit including existing and

newly introduced units will be loaded by a ‘merit order’.

After a BOT power plant enters, a fixed load factor of the

BOT unit has been given and must be guaranteed. There-

fore, firstly we search the loading point of a BOT plant to

satisfy its load factor based on load duration curve in each

interval, and then determine the loading points of other units

according to ‘merit order’.

3.4. Uncertainties

Many sources of uncertainty may have an important

impact on GEP by different future supply conditions, which

include load growth rate, fuel costs, construction costs,

financial constraints, etc. In this paper, for simplicity we

only consider the load growths rate as uncertain variable,

and other uncertainties can be treated similarly.

Due to the same reasons as in Ref. [12], this uncertain

variable is modeled by Markov chains as shown in Fig. 1.

4. Genetic algorithm approach for GEP

GAs are stochastic algorithms whose search methods

model some natural phenomena: generic inheritance and

Darwinian strife for survival. GAs, differing from conven-

tional search techniques, start with an initial set of solutions

called population. Each individual in the population is

called a chromosome, representing a solution to the

problem. The chromosomes evolve through successive

iterations, called generations. During each generation, the

chromosomes are evaluated, using some measures of fitness.

To create the next generation, new chromosomes, called

offspring, are formed by either (a) merging two chromo-

somes from current generation using a crossover operator or

(b) modifying a chromosome using a mutation operator. A

new generation is formed by selecting some of the parents

and offsprings, according to the fitness values. Fitter

chromosomes have higher probabilities of survival. After

a predetermined number of generations, the algorithms

converge to the best chromosome, hopefully representing

the optimum or near-optimum solution to the problem. GA

is robust because no restrictions on the solution space are

made. GA can handle any kind of objective functions and

any kind of constraints defined on discrete, continuous, or

mixed search space.

In general, a GA for a particular problem must have the

following five components: (1) a genetic representation for

potential solutions to the problem, (2) a way to create an

initial population of potential solutions, (3) an evaluation

function that plays the role of the environment, rating

solutions in terms of their ‘fitness’, (4) genetic operators that

alter the composition of children, and (5) values for various

Fig. 1. A discrete Markov chain for load demand.
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parameters that the GA uses (population size, probabilities

of applying genetic operators, etc.)[18].

4.1. String representation and constraint handling

How to encode a solution of the problem into a

chromosome is a key issue for GA. The same string

representation as in Ref. [16] is used which has the

following features:

† The length of a chromosome equals to the number of

total newly introduced generation units.

† Each gene represents the introduced time interval of each

unit.

For example, in Table 1, the technology type 1 has two

units which will be introduced in intervals 2 and 3, and

technology type M has 6 units which will not be introduced

(0 represents not introduced). Integer encoding is used

thanks to its convenience for a combinatorial optimization

problem. If the capacity limit (6) is violated, the

chromosome will be repaired to round into the limit.

4.2. Creation of initial population

Initial strings in the population are generated randomly.

The distribution of initial strings is uniform in this paper,

and has the tendency of spreading out over intervals.

Therefore, this random creation of initial population is

appropriate for the specific string representation.

4.3. Evaluation and selection

The fitness value of a string is calculated using

f ¼
a

z
ð10Þ

where a is a constant, and z is the objective function value of

Eq. (2).

To avoid premature convergence, the following modified

fitness function, which normalizes the fitness values of

strings into real numbers within [0,1], is used in this paper.

f 0 ¼
f 2 fmin

fmax 2 fmin

ð11Þ

where fmax and fmin are the maximum and minimum fitness

values in a generation.

In this paper, Roulette wheel selection (RWS) and

Tournament selection are tested. In addition, the selection

scheme might not give a set of dominant member the chance

to reproduce, and string operations will increase the

probability of destroying string structures of an elite

group. To mitigate this unfavorable effect to some extent,

an elitism mechanism is applied to make sure that the best

chromosomes in the present generation are kept in the next

generation.

4.4. String operation

The crossover used here is a simple one-point crossover.

In mutation operation, an interval number other than the

current interval is selected randomly among the maximum

and minimum intervals. Crossover leads to population

convergence while mutation helps to maintain diversity. To

prevent premature convergence or excessive diversity, a

dynamic adjustment mechanism of probabilities for string

operation is used. The convergent situation is monitored by

statistical information from the population in generations.

When premature convergence occurs, the crossover prob-

ability is decreased while mutation probability is increased.

For excessive diversity, the reverse adjustment is carried

out.

4.5. Calculation of annual variable costs

In fact, the GA method decomposes the GEP problem

into two levels: the upper is to determine the optimal

generation mix by GA search, and the lower is to calculate

total costs. For a given generation mix, i.e. a chromosome,

the total fixed cost can directly be calculated, and the

variable cost for each year can separately be calculated

based on the ‘merit order’ loading scheme. It should be

noted that there is only a little difference in the ‘merit order’

loading schemes between GEP without BOT and GEP

with BOT. In addition, uncertainties are only concerned

in the calculation of annual variable costs. Therefore,

the GA method for GEP is straightforward extendable in

respect to BOT constraints, uncertainties and other

considerations.

Based on the comparisons between GA approaches and

conventional GEP approaches reported in Refs. [16,17], we

are convinced that our GA method should have a better

performance than other conventional methods.

5. Numerical examples

The proposed method has been applied to an example

system, which is a modification from Ref. [16]. The initial

system, candidate plants and load data are listed in

Table 1

An example of chromosome

Technology

1

· · · Technology

I

· · · Technology

M

2 3 2 5 5 5 0 0 0 0 0 0
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Tables 2–4, and a 15-year planning period is considered,

which is divided into 5 time stages, each of 3 years

duration.

In the Table 3, plant types 1 and 2 are base plants while

type 4 is a peak plant. The load duration curves are

approximated with a second order function of loads. Peak

loads and base loads are assumed to have same growth rates.

The reserve is assumed to be 10% of the peak load. Three

states of load growth rates are considered in Fig. 2: low-2%,

middle (more possible)-4%, and high-6%.

The parameters for GA are as follows:

String representation: integer coding

Selection method: Roulette wheel selection (RWS),

Tournament selection

Crossover probability: 0.8–0.2

Mutation probability: 0.01–0.1

Initial population: 50

Maximum generation: 300

Case 1: without BOT

First the total expected cost of GEP without BOT power

plant is calculated, and total 6.6519 Myen is obtained.

Case 2: BOT 1

Then a unit of type 4, which is a peak type unit, is

selected as a BOT power plant, and is assumed to be

installed in the third stage, and its load factor is 0.1 (for full

capacity). Its breakeven cost is 15.4 yen/kW h.

Case 3: BOT 2

This time, the same unit as BOT1 is selected, but its load

factor is increased to 0.3. Its breakeven cost is

11.3 yen/kW h.

Case 4: BOT 3

Finally BOT 2 is brought forward to the first time

interval. Its breakeven cost is 10.3 yen/kW h. Here we

should point out that BOT3 has more total fixed cost due to

its early introduced interval.

We should also mention that many of type 4 units are

installed for system reserve. The above cases show that the

introduced interval and load factor of BOT plant have

important effects on GEP. In case 2, an unit which is in the

generation mix of the original GEP and at the same interval

was selected as a BOT, and its load factor is closer to that in

the original GEP. In the case 3, the same BOT but different

load factor was evaluated. Because it is a peak type of unit,

so its load factor in the original GEP is relatively lower.

Increase of its load factor lets it to generate more electricity,

however the breakeven cost is decreased. In these two cases,

the combination of other units is the same as that in the

original GEP, but it is possible that change of BOT load

factor would make the combination of other units deviated.

In case 4, the BOT plant was brought forward to interval 1

from interval 3, it is seen that another unit of type 3 is

delayed from interval 2 to interval 3, and was replaced by a

unit of type 4, so the original combination of generation

units was disturbed. The BOT in this case increases the total

cost of utility for generation addition by itself. Therefore,

the breakeven cost of the BOT plant is much low.

Actually a unit of base type (type 2, coal) is also selected

as a BOT to install in its original interval, and assign its load

factor to be 1. Obviously there are no influences on the

original GEP. Therefore, the BOT can get maximum benefit

based on our approach. So BOT investors will be

encouraged to build base type of plants.

6. Conclusions

As a dominant form of private investment, build–

operate–transfer (BOT) arrangement has been drawing

much attention. In the economic evaluation of BOT energy

Table 2

Parameters of the test system

Technology Variable cost

(yen/MW h)

Fixed cost

(yen/kW)

Unit capacity

(MW)

Nuclear 5 65,000 1000

Coal 8 45,000 500

LNG 10 40,000 300

Thermal 15 35,000 200

Table 3

Existing and candidate units

Technology Existing units Candidate units

Nuclear 4 2

Coal 6 10

LNG 4 10

Thermal 14 18

Table 4

Load duration curve

Interval Peak load (MW) Base load (MW) L21ðxÞ ¼

ðx 2 dÞ2=c

c £ 104 d £ 104

Present 10,000 3500 0.4821 1.0

Fig. 2. State model of the Markov chain for load growth rate.
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contracts, pricing BOT generation at its avoided cost is the

breakeven point for the utility, meanwhile uncertainties

must be taken into account. In this paper, the breakeven cost

of a BOT power plant is defined, and an approach of

calculating the breakeven cost to the utility is proposed. The

proposed approach requires the computation of production

costs from GEP under future uncertainties. To facilitate the

inclusion of BOT constraints and future uncertainties, a GA

approach is developed for GEP.

The breakeven cost is a useful measure in the economic

evaluation of BOT power plants. Our suggested economical

evaluation model is illustrated through case studies. It has

been shown that the installation intervals, load factor and

capacity of a BOT power plant will influence the GEP

results significantly, and sensitivity analysis on these factors

should be conducted in the evaluation.
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