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ABSTRACT: Contractors may be faced with the problem of deciding the bidding 
price of a construction project, when the likelihood of the occurrence of risk events 
and the risk-associated consequences (monetary loss and gain) are uncertain. If 
the monetary loss resulting from risk events is not considered or is underestimated 
due to associated uncertainties, a construction enterprise may suffer a tremendous 
loss and eventually fail. In this paper, a risk-pricing method is proposed for ana- 
lyzing and pricing construction project risk. The method consists of identifying risk 
elements and quantifying risk-associated consequences. The uncertainty in the val- 
ues of the quantified consequences are represented by using a fuzzy set approach 
and incorporated directly into the bidding price decision process. The proposed 
risk-pricing method will assist contractors in the process of estimation under un- 
certainty. A real construction project is selected to illustrate how the proposed 
method can be put into practice. 

INTRODUCTION 

Contract ing is an ideal business for those who enjoy  taking chances. 
However ,  when construction projects  (such as environmenta l  remedia t ion  
and mass transit  system projects ,  and somet imes tunnel  construction proj-  
ects) are complex and risky, contractors  are faced with a variety of si tuations 
involving many unknowm unexpected ,  f requently undesirable ,  and often 
unpredictable factors. In this case, contractors  are subject  to cost increases 
that are not seen in construct ion projects  with a relat ively low degree of 
risk (such as s tandard  commercia l  building projects) .  These cost increases 
can be at t r ibuted to the uncertaint ies  in every e lement  of risk analysis such 
as limited engineering data ,  insufficient construct ion knowledge,  and lack 
of documentat ion on opera t iona l  history. 

As construction industries become involved in the super  projects  of the 
private business sector,  they are often required to furnish conceptual  esti- 
mates to private owners.  The industries then provide  owners with a risk 
analysis est imate to de te rmine  a pro jec t ' s  feasibili ty,  or  when owners are 
on a fast-track schedule and the design is still in the pre l iminary stages but  
the project  must be comple ted  within a set t ime frame. Such situations have 
served to renew interest  in a more  professional  approach  to new ways of 
defining the uncertaint ies and risk-cost analysis schemes required for suc- 
cessfully managing construct ion projects .  

An important  requi rement  for successful management  in the contract ing 
field is effective evaluat ion of the risks involved in the construct ion project ,  
followed by sound decisions based on this evaluat ion,  and appropr ia te  action 
taken as a result  of these decisions. To calculate r isk-associated conse- 
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quences (monetary losses and gains), most engineers and contractors gen- 
erally use historical records and their know-how by direct experience in the 
construction field (AI-Bahar and Crandall 1990). In many cases, however, 
directly applicable historical data are inadequate or unavailable, and then 
the subjective judgment of experts with the relevant knowledge and ex- 
perience is used. Even in this case, most of the data evaluated are uncertain 
because the historical records for a risk event are usually different for every 
project case, and the subjective judgment of experts varies from one expert 
to another (AI-Bahar and Crandall 1990). 

Several methods can be used for uncertainty analysis. These include: (1) 
Probabilistic analysis; (2) interval analysis; and (3) fuzzy set analysis (Zim- 
mermann 1987; Lee et al. 1991). In probabilistic analysis, statistical measures 
(mean and standard deviation) of input variables are used to estimate the 
mean and standard deviation of the results. This method is precluded if the 
input variables have a nonprobabilistic nature. Interval analysis uses ranges 
(intervals) for input variables to estimate plausible ranges of the results. 
However, it is difficult to define the intervals of input variables when the 
boundaries of the intervals are uncertain. A fuzzy set approach, pioneered 
by Zadeh (1965), is useful for uncertainty analysis where a probabilistic 
data base is not available and/or when (interval) values of input variables 
are uncertain. The fuzzy set approach has been widely applied to represent 
the uncertainties of real-life situations (Bogardi and Bardossy 1983; An- 
andalingam and Westfall 1988; Paeke t  al. 1992). 

In this paper, the uncertainty in risk-associated consequences and its 
impact on results are characterized by an application of fuzzy set theory and 
incorporated into the bidding price decision process. The specific objectives 
of this paper are twofold. The first objective is to develop a risk-pricing 
method for quantifying risk-associated consequences under uncertainty and 
then incorporating the quantified consequences into the bidding price de- 
cision process. The second objective is to show how the risk-pricing method 
can be put into practice by applying the method to a real construction 
project. 

FUZZY SETS AND FUZZY NUMBERS 

Fuzziness or uncertainty represents situations where membership in sets 
cannot be defined on a yes/no basis because the boundaries of the sets are 
vague. The central concept of fuzzy set theory is the membership function, 
which represents numerically the degree to which an element belongs to a 
set. In a classical set, a sharp or unambiguous distinction exists between the 
members and nonmembers of the set. In other words, the value of the 
membership function of each element in the classical set is either 1 for 
members (those that certainly belong to the set) or 0 for nonmembers (those 
that certainly do not). However, it is sometimes difficult to make a sharp 
or precise distinction between the members and nonmembers of a set. For 
example, the boundaries of the sets of very risky words, nice houses, or 
numbers much greater than 1.0 are fuzzy. 

Since the transition from member to nonmember appears gradual rather 
than abrupt, the fuzzy set introduces vagueness (with the aim of reducing 
complexity) by eliminating the sharp boundary dividing members of the set 
from nonmembers (Klir and Folger 1988). Thus, if an element is a member 
of a fuzzy set to some degree, the value of its membership function can be 
between 0 and 1. When the membership function of an element can only 
have values 0 or 1, the fuzzy set theory reverts to the classical set theory. 

744 



CONSTRUCTION RISK ANALYSIS 

/~(Q) 

1 . o  

The risk analysis consists of three distinct stages: (1) The identification 
of risk elements (seeing all foreseeable risks); (2) the quantification of risk- 
associated consequences (measuring monetary losses and gains resulting 
from risk events); and (3) risk control (reducing or removing the exposure 
of a given risk by substituting proven technology for experimental tech- 
nology) (Park 1979). 

Construction projects vary widely in their inherent risks. Standard com- 
mercial building projects have a relatively low degree of risk. Projects that 
are very sensitive to subsurface information, i.e., tunnels, have a higher 
degree of risk. Also, environmental remediation projects that have an un- 
defined work scope, or are subject to changing government regulation, have 
a very high degree of risk (Frano 1991). Some risks are very common, for 
example, the unit price for the cost of concrete is almost always wrong, if 
only by a small amount. On the other hand, some risks are significantly less 
common, such as the likelihood that a hurricane will damage a job site. 
Loss refers to the damages sustained if the risk occurs. The common risks 

0 .5  

o . o  I 
q 

I I I 
6 y 

FIG. 1. Membership Function of Fuzzy Number Q 

A special class of fuzzy sets is described by fuzzy members, which are 
values that belong to a given set with a certain degree of membership only. 
As an example of fuzzy members, let Q be a fuzzy number and its mem- 
bership function be denoted by (Fig. 1): 

Ix(Q) = 1 (q - Q) , q - ~-< Q - < q  . . . . . . . . . . . . . . . . . . . . .  (la) 

t~(O) -=- 1 (O - q-----~) q < O < q + %, (lb) 
7 

tx(Q) -- 0, otherwise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (lc) 

where q = the center value of the fuzzy number Q, and ~ (~ > 0) and 7 
(~ > 0) represent the left and right fuzzinesses from the center value q. 
When the values of ~ and 7 are equal to zero, Q = a nonfuzzy number by 
convention. As the values of ~ and 7 increase, Q becomes fuzzier and fuzzier. 
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(i.e., an incorrect unit price for concrete) have relatively low losses, while 
the less common risks (i.e., a hurricane) have very large losses. 

Some risks are well known enough that they can be insured against, with 
the contractor thereby assuming a direct cost and transferring the risk to 
an insurance company. Other risks, however, must be borne by the con- 
tractor. 

The primary consideration in evaluating risks involves the potential re- 
turns or benefits that can be gained by taking the risks. In considering the 
risk of loss against the possibility of profit, the possibility of the occurrence 
of the risk events must first be estimated; next, the consequences of each 
risk on the business must be appraised; then, the cost of reducing risks by 
different degrees should be determined; and, finally, a judgment is necessary 
concerning whether the long-run profit expectation justifies the risk in- 
volved. 

STRATEGIES OF CONSTRUCTION RISK MANAGEMENT 

Risk management strategies are concerned with designing management 
actions to better understand the impact of the identified risk by modifying 
either the exposure or loss aspects of the risky situation. The strategies of 
risk management consist of three distinct stages: risk prevention and re- 
duction, risk transfer, and risk retention (Paek 1991). 

In addition to risk characteristics of the project, risk management strategy 
must address several subsidiary issues. One important question is the view- 
point adopted during the risk analysis. For example, contract language 
transfers risk from one party to another. Risk must be viewed from a specific 
point of view relative to contract language. Risk management strategy must 
also recognize the underlying goals of the analysis. Some analyses are con- 
ducted to help in go/no-go decisions for projects, and others are conducted 
to provide a basis for proactive projectwide risk management. Risk man- 
agement strategy must also take into account such fundamental items as the 
amount of time available for the analysis, the data available, and the ex- 
pertise available to the project. A final issue that must be considered is the 
fact that people need help in making accurate judgments about risk-asso- 
ciated consequences. 

Risk management strategy must account for all of the preceding factors 
and then provide specific instructions on how to conduct risk assessment 
study. Specific information and procedures must be provided concerning 
identifying risks by measuring the uncertainties of the risk management 
process. 

RISK-PRICING ALGORITHM 

To determine the bidding price of a construction project, contractors 
traditionally use the following simple calculation: 

B P  = A C + P F  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (2) 

where B P  = bidding price (stipulated price); A C  = actual cost (direct, 
indirect, and overhead cost) to perform a construction project; and P F  = 
contractor's profit. 

Eq. (2) is clear and easy to implement. However, contractors are usually 
faced with the problem of deciding the bidding price ( B P )  when there are 
risk elements consisting of positive risks (potential monetary losses) and 
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negative risks (potential monetary gains) in a project work, and their cor- 
responding consequences are uncertain. The risk elements involved and 
their consequences may come both from historical records that show a 
construction firm's experience in past projects and from the opinion of 
experts. In many cases, however, directly applicable historical records con- 
cerning the risks and their consequences are not available in adequate amount, 
and the opinion of experts varies from person to person. In this case, it is 
difficult to precisely estimate risk-associated consequences. 

Fig. 2 shows a framework for pricing construction risks while considering 
risk-associated consequences. In this paper, risk-associated consequences 
are estimated as fuzzy numbers (fuzzy consequences) to reflect their un- 
certainty. As mentioned earlier, the fuzzy numbers are values that belong 
to a given set (interval) with a certain degree of membership only. The 
uncertainty in the consequence of a risk event may be represented by two 
intervals (i.e., the most likely interval and the largest likely interval), which 
can be determined on the basis of the variability reflected in the historical 
records that contractors experienced in past projects and also the judgments 
of experts with relevant experience and knowledge. The two intervals can 
then be used to construct the membership function of the risk-associated 
consequence, as shown in Fig. 3. 

To provide an example for showing how both "most likely" and "largest 
likely" intervals can be determined, let us assume five engineers participate 
in the process of evaluating subsurface conditions. Due to a lack of sub- 
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Consequences under| 
Uncertainty l 
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C o n t r a c t o r s  e x p e r i e n c e d  
in Past Projects 

FIG. 2. Framework for Pricing Construction Risk 
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Estimate of Imprecise Consequence Z as Fuzzy Number 

Z 

surface information, each of them can differently interpret subsurface con- 
ditions and thus five different estimations can be made on the quantity of 
the potential extra excavation material when the unexpected case occurs. 
Further, if costs for transporting the five different amounts of material such 
as 1,040 m 3, 1,380 m 3, 1,530 m 3, 1,760 m 3, and 2,150 m 3 are $3,120, $4,140, 
$4,590, $5,280, and $6,450, respectively, then the largest likely interval of 
the monetary loss resulting from the extra excavation material may be the 
range between the minimum and maximum values (i.e., $3,120 and $6,450) 
among the five values, and the most likely interval may be the range between 
the two values (i.e., $4,290 and $5,280) around the average of the five 
values. 

For a mathematical formulation, let Z be a risk-associated consequence, 
Ix(Z) be the membership function of Z ,  and Zh be the domain (interval) of 
the consequence at the membership degree h (i.e., a -< Zh -< b) (Fig. 3). 
If the trapezoidal shape is reduced to a vertical, line, it represents a crisp 
(nonfuzzy) number. However, it should be noted that the value of the 
consequence, Z, can be changed when contractors reduce or remove their 
liability for the consequence by adopting a proper risk-management strategy 
such as risk prevention, risk retention, and risk transfer. 

With the views just described, the net loss, Li,h, resulting from the ith 
positive risk event can be calculated as: 

Li.h = [Zi.h -- (Oi,h [Si)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (3) 

where Zi,h = total monetary loss involved in the occurrence of the ith 
positive risk event; Di,h = the monetary amount that can be reduced or 
avoided by adopting the risk management strategy Si for managing the ith 
positive risk event; and h = membership degree (0 -< h -< 1). 

For example, assuming that the total monetary loss, Z~,h, resulting from 
the ith positive risk event is from $120,000 to $180,000 and that a contractor 
retains all of the monetary loss [i.e., (Oi,h]Si) = 0 ] ,  then Li,h corresponds 
to Zi,h. However, if the contractor can reduce the liability by one third of 
the monetary loss, Z~h, by adopting the risk transfer strategy, S~, then 
(Di,hlS~) = ($80,000, g120,000) and thus Li, h = ($40,000, $60,000). 

In a formula similar to (3), the net gain, Gj,h, resulting from the jth 
negative risk event can be obtained by: 
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Gj,h = [Z j ,h  -- ( D j , h I S j ) ]  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 4 )  

where Zj,h = total mone ta ry  gain involved in the occurrence of the jth 
negative risk event;  and Dj,h = the mone ta ry  amount  that  can be reduced 
or avoided by adopting the risk management  strategy Sj for managing the 
fih negative risk event.  

The total net loss, Th, involved in a construction project  work can then 
be calculated by subtracting the sum of the net gains from the sum of the 
net losses, or 

i=1 j = l  

where m = the number  of  positive risk events; and n = the number  of  
negative risk events. 

In (5), the total net loss, Th, varies with the membership  degree h. With 
the help of two values Th-0 and Th= 1, the total net loss, T, can be estimated 
as a fuzzy number  with the following membership  function (Lee et al. 1991) 
(Fig. 4): 

po(T) = 1, et < T < [3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (6a) 

t~(T) - (T - A) (a - A ) '  A - <  T - < ~  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 6 b )  

~(T)  - ( T -  B) 
([3 - B ) '  [3 -< T-< B . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (6c) 

I~(t) = 0, otherwise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (6d) 

where A and B = the lower- and upperbound  values, respectively, of the 
Th=0; and c~ and [3 = the lower- and upperbound  values, respectively, of 
the T h 1. 

Obviously, the bidding price of a construction project  should be decided 
as a point or crisp value (not interval value), but the total net loss, T, 
estimated as a fuzzy number ,  may be an interval value (i.e., A 4: B) 
restricted by the membership  function of (6). In this case, the fuzzy number  
T should be transferred into a crisp value that represents the fuzzy number  
T. In this paper,  a ranking method is used to transfer the fuzzy number  T 

0 . 0  
B 

I 

A cz 

~(T) 

1.0 

FIG. 4. Membership Function for Total Net Loss T 

T 
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into the crisp value RC,  making the ranking value of the fuzzy number  T 
equal to that of the crisp value RC.  Using the ranking method developed 
by Chen (1985) (Appendix I), the crisp value R C  can be expressed as: 

V I +  V2 
R C  - 2(Wl + W2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (7) 

where 

V1 = B3(B + 3,:( - 3A) - Bz(4aA + [3A + a13) . . . . . . . . . . . . . .  (8a) 

V2 = A3(3B - 313 - A) + A2(413B + a B  + (x[3) . . . . . . . . . . . . . . .  (8b) 

Wl = B2(2B - 7A - 13 + 2c0 + 3(AB)(I 3 - ct) . . . . . . . . . . . . . . .  (8c) 

W2 = AZ(7B - 2 , 4  - 2~ + c~) - ((x~)(B - A )  . . . . . . . . . . . . . . . .  (8d) 

It should be noted that Lmi n and Lma x in Appendix  I correspond to A and 
B (Fig. 4), respectively. If  the fuzzy number  T has the membership  function 
of a symmetric shape, that is (a  - A) -- (B - [3) on Fig. 4, then the crisp 
value R C  corresponds to the medium value between A and B, that is, R C  
= (A + B)/2. Furthermore,  if A = B, then T in itself is a crisp value. In 
this case, R C  is directly equal to T (i.e., R C  = T). 

To provide a numerical example for explaining what the calculation by 
(7) produces, that is, what the crisp value R C  on the left side of (7) means,  
let the values of the variables A,  B, a ,  and 13 (Fig. 4) be A -- $1,000,000, 
B = $8,000,000, a = $1,800,000, and [3 = $2,200,000 (Fig. 5). Because 
the bidding price of a construction project  is a crisp value (not interval 
value), the total net loss T should also become a crisp value. As shown in 
Fig. 5, the largest likely interval for T is from $1,000,000 to $8,000,000. 
When a contractor chooses a value among values constructing the interval, 
he or she might select the value A = $1,000,000 with the most  optimistic 
view of risk events, or the value B = $8,000,000 with the most  pessimistic 
view. However ,  the selection of the value A may result in a t remendous  
loss, while the selection of the value B may fail to win the bid. To overcome 
these problems, the value M = $4,500,000 or k = $2,000,000 (Fig. 5) could 
then be considered as the value that represents the total net loss ranging 
from $1,000,000 to $8,000,000, where M = the medium value of the largest 
likely interval for T, that is, M = (.4 + B)/2,  and k = the medium value 

p(T) 

1.0 

0.0 

1 

1.0 

i i 

i i 
I I 
I i 

I 

1.8 k 2.2 RC M 8.0 

Total Net Loss T (x 10 6), Dollars 

FIG. 5. Numerical Example for Explaining Meaning of R C  
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of the most likely interval for T, that is, k = (et + 13)/2. However, the 
selection of the value M is to take no account of the most likely values to 
occur (i.e., values between $1,800,000 and $2,200,000), while the selection 
of the value k is to pay no attention to the great difference between k = 
$2,000,000 and B = $8,000,000. Therefore, a compromised value between 
k and M should be determined. The compromised value (i.e., R C  on Fig. 
5) can then be calculated using (7), which was derived by applying the 
ranking method described in Appendix I. In the case of the present example, 
the value R C  = $3,273,037. Always, the value R C  is a crisp number and 
takes a value between k = (a + 13)/2 and M = ( A  + B)/2 .  

On the basis of the foregoing, the value R C  may be added in the right 
side of (2) in order to remove or reduce the contractor's loss resulting from 
the risk elements associated with a construction project, or 

B e  = A C  + e F  + R C  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (9) 

If the value R C  has a negative sign (i.e., R C  < 0), it means that the sum 
of the gains is greater than the sum of the losses; otherwise, the sum of the 
losses is greater than the sum of the gains. 

CASE STUDY 

A real project for urban highway construction was chosen to show how 
computerized risk-pricing algorithm [(3)-(9)] can be put in practice. Since 
most of the input data used in the case study are proprietary information, 
we will call the UHCOC project. 

The UHCOC project is for the construction of 32.18 km highway with 
80 various types of bridge structures, which include approximately 21,870,000 
m 3 of excavation material, 90,000 m 2 of retaining wall, and 45,000 m of 
various sizes of drainage pipes. The size of the proposed construction project 
was projected to be around $800 million, along with a completion schedule 
of 1,500 calendar days including the design phase. The UHCOC project 
was to be financed by local private owners raising the funds by issuing local 
bonds and charging road tolls. 

One of the major construction incentives in the contract was the potential 
for sharing revenues generated from road tolls if the project could be com- 
pleted early. Since the project's contract volume was very large and the job 
site was in a densely populated area, the private owners asked for a thorough 
and professional risk analysis. Major considerations in the analysis of con- 
tingencies to cover risks in the estimation process on this construction project 
we re: 

1. There had to be a 20% involvement by DBE (disadvantaged business 
enterprises (DBE). 

2. The project had to pass inspection by the California Department of 
Transportation, even though financed totally by private owners. 

3. 35% of the design was completed at the time of bid letting. 
4. There was a liquidated damage clause in the contract, $200,000 per 

day extended up to maximum 500 days after original completion schedule. 
5. All right-of-ways were not acquired at bid time. 

The estimators, from the construction firm that bid the project, provided 
their own assessment of the major risk elements and the monetary conse- 
quences associated with each risk element. Also, many key joint venture 
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TABLE 1. Monetary Loss Estimates Related to Positive Risk Elements 

Positive risk elements 
(1) 

I Most likely range a Largest likely range a 
(2) (3) 

(a) Estimation Risks 

Topsoil quantity overrun--150,000 cu yd 
Additional retaining walls and pilings under 

retaining walls 
Additional wickdrain pipe 
Additional remedial excavation in lieu of 

wickdrain pipe 
Rock quantity overrun--drill and shoot 

by 25% 
Additional 1-mi hauling distance of drill 

and shoot rock 
Disposal fee $1.0/cu yd for drill and shoot 

rock 
Increase in all storm drainage pipe by 6 

in. 
Increase in reinforced concrete pipe 

quantity by 15% 

$285 - $315 

$4,500-$5,250 
$142-$t50 

$1,800-$2,000 

$3,230-$3,570 

$2,375-$2,625 

$4,753-$5,047 

$1,170 - $1,430 

$1,615-$1,700 

$255-$345 

$3,500-$5,500 
$120-$150 

$1,400-$2,400 

$2,550-$4,250 

$2,000-$3,000 

$4,165- $5,635 

$1,040-$1,560 

$1,360-$1,700 

(b) Nonestimation Risks 

Schedule acceleration 
DBE by 20% 
Design growth (e.g., bigger cuts, more 

bridges) 
Design/approval delays 
Regulatory agencies 
Disposal of excess materials 

$6,750-$7,500 
$900-$1,000 

$5,100-$6,600 
$3,600-$4,400 
$4,750-$5,250 
$4,750-$5,000 

$5,250 - $8,625 
$800-$1,150 

$3,000-$7,500 
$2,800-$5,200 
$3,750-$6,000 
$4,250-$5,500 

"Each of monetary losses described should be multiplied by 1,000. 

partners related to the U H C O C  project gave their subjective judgment of 
the likely interval for each of risk-associated consequences. Tables 1 and 2 
show the monetary losses and gains, respectively, associated with the risk 
elements in the U H C O C  project. Usually, the "worst  case scenario" ap- 
proach is used for risk-associated loss estimates (i.e., the use of  the upper- 
bound values of potential losses), and the "best case scenario" approach 
for risk-associated gain estimates (i.e., the use of the upper-bound values 
of potential gains). However,  it may be difficult to precisely determine the 
upper-bound values of risk-associated consequences (monetary losses and 
gains) as point or crisp numbers when uncertainties exist in a construction 
project, as in the case of  the U H C O C  project. 

To represent the uncertainty in the upper-bound value of the consequence 
resulting from each risk event related to the U H C O C  project, both "most  
likely" and "largest likely" intervals for each consequence (Tables 1 and 2) 
were estimated by adopting the risk management  strategy that the contractor 
retains all of each consequence, that is, (Di,h[Si) = 0 [(3)] and (DLh[Sj) = 
0 [(4)]. These two intervals were then used to construct the membership 
function (Fig. 3) for each consequence. Tables 1 and 2 have two different 
kinds of risk elements: estimation risks and nonestimation risks. The esti- 
mation risks were defined as the quantifiable risks such as additional/less 
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TABLE 2. Monetary Gain Estimates Related to Negative Risk Elements 

Negative risk elements 
(1) 

I 
Most likely range a ] Largest likely range a 

(2) I (3) 

(a) Estimation Risks 

Less remedial excavation in lieu of wick- 
drain pipe 

Less retaining walls and pilings under re- 
taining walls 

Fatten slopes on site waste from drill and 
shoot rock 

Less tire/track/repair cost 
Less equipment maintenance cost 
Piling reduction by 6 ft per pile under 

bridge 
Replace 78R-value rock with 50R-value 

rock 

$297-$300 

$3,800-$4,200 

$2,700-$3,000 
$1,067-$1,133 
$1,140-$1,260 

$873-$900 

$285-$300 

$3,200-$4,600 

$2,400-$3,000 
$935-$1,265 
$996-$1,404 

$720-$900 

$1,725-$2,415 $2,185-$2,300 

(b) Nonestimation Risks 

Schedule deceleration $4,750-$5,000 $3,750-$5,750 
Less design/approval delays $1,800-$2,200 $1,400-$2,600 

"Each of monetary gains described should be multiplied by 1,000. 

remediation excavation in lieu of wickdrain pipes, additional/less retaining 
walls, and rock quantity overrun, etc. For example, retaining wall require- 
ments increase/decrease in retaining wall quantities due to variations in 
advanced ground conditions. The nonestimation risks are nonquantifiable 
risks such as design growth, schedule acceleration/deceleration, design/ap- 
proval delays. An example of nonestimation risks would be untimely design/ 
approval delays that would slow the startup of work and result in overtime 
costs to stay on schedule. Conversely, early design/approval could save costs. 
As of September 1992, since the construction work has not been started, 
the exact numbers for take-off quantities and unit prices for each risk ele- 
ment have been held confidential at the firm's request. 

In conjunction with this paper, a microcomputer-based software was de- 
veloped to help decision makers incorporate the uncertainty in risk-asso- 
ciated consequences into the bidding price decision process. The software 
utilizes the risk-pricing algorithm described in the previous section and 
requires input data in the form shown in Tables 1 and 2. With the help of 
Tables 1 and 2, the software was used to calculate the "most likely" and 
"largest likely" intervals for total net loss and also the crisp value RC [(7)] 
that represents the total net loss estimated as a fuzzy number. Results of 
the calculation showed that the most likely interval is from $25,427,000 to 
$33,225,000 (i.e., ~ = $25,427,000 and ~ = $33,225,000 on Fig. 4), the 
largest likely interval from $14,006,000 to $43,104,000 (i.e., A = $14,006,000 
and B = $43,104,000 on Fig. 4), and RC = $28,968,350. 

CONCLUSIONS 

In this paper, a risk-pricing algorithm was provided to assist contractors 
in deciding the bidding price of a construction project where the conse- 
quences resulting from risk events related to the project are uncertainty. A 
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microcomputer-based software, based on the risk-pricing algorithm, was 
developed. To use the software, it is not required that users (i.e., contrac- 
tors) understand the algorithm. However, the algorithm would be valuable 
to some researchers and will be helpful, at least in understanding the results 
of calculation by the software, to the users of the software. 

As shown in the case study, assessing risk-associated consequences con- 
tains elements of uncertainty. This paper shows that the uncertainty inherent 
in these elements and its impact on results can be characterized by applying 
fuzzy set theory and incorporated directly into the bidding price decision 
process. 

Since the selection of risk elements tends to be case specific, realistic 
generalizations are hard to formulate. In other words, the kind of risk 
elements varies with the kind of construction projects, and the number of 
risk elements depends largely on the level of analysis desired (preliminary 
or detailed). However, care must be taken to identify all the risk elements 
where undesirable outcomes might fatally flaw a construction project, and 
it must also be taken to remove a potential of biased inputs. 

For the case study, if the contractor takes the risk-management strategy 
that he retains all of the total net loss, the potential loss varies from $14,006,000 
to $43,104,000, and then the value RC = $28,968,350, which is the value 
that represents the potential loss ranging from $t4,006,000 to $43,104,000. 
Therefore, the value RC = $28,968,350 may be added in the final bidding 
price to remove the contractor's potential loss resulting from the risk ele- 
ments.associated with the U H C O C  project. However, the final result (i.e., 
the value of RC) can be changed when the contractor reduces or removes 
his liability for the consequences by adopting other risk-management strat- 
egies such as risk prevention and risk transfer. In other words, the final 
result is sensitive to the adopted risk-management strategies. 

ACKNOWLEDGMENTS 

This study was jointly sponsored through the Grant-in-Aid Program by 
the Graduate School and the Center for Infrastructure Research (CIR) at 
the University of Nebraska-Lincoln.  The writers greatly appreciate the 
willingness of the many industry professionals who took their valuable time 
to describe their experience with risk assessment and estimation in con- 
struction. 

APPENDIX I. RANKING METHOD 

When there are n fuzzy numbers [L(x), x = 1, . . .  , n], the ranking 
method developed by Chen (1985) has been used to determine the ranking 
of the n fuzzy numbers. The method determines the ranking of n fuzzy 
numbers by using a maximizing set and a minimizing set (Fig. 6). 

The maximizing set M is fuzzy subset with membership function IXM(L) 
given as: 

L - L m i  n 
txM(L) Lmax _ L m i n ,  L,,~n -< L <- L . . . . . . . . . . . . . . . . . . . . . .  (10a) 

~M(L) = 0, otherwise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (10b) 

where forx = 1 . . . . .  n, Lm~, = rain (min Lh=o Ix]) and Lma, = max (max 
Lh_o[X]). The right ranking value, UR(x), for the fuzzy number L(x) is then 
defined as: 
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FIG. 6. Ranking Method of Fuzzy Numbers 

UR(x) = max(min{l~M(L), Ix[L(x)]}) . . . . . . . . . . . . . . . . . . . . . . . . . . .  (11) 

The minimizing set G is a fuzzy subset with membership function lxc(L) 
given as: 

L - L m a  x 

tx~(L) - Lmin _ Lmax, Lmi n -< L -< Lma x . . . . . . . . . . . . . . . . . . .  (12a) 

Ixc(L ) -= 0, otherwise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (12b) 

The left ranking value, Uz.(x), for the fuzzy number  L(x) is then defined 
as:  

UL(x) = max(min{ixo(L), tx[L(x)]}) . . . . . . . . . . . . . . . . . . . . . . . . . . .  (13) 

Finally, the ranking or ordering value for the fuzzy number  L(x) then is 
written as: 

U(x) = [UR(x) + 1 - UL(X)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (14) 
2 
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